UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Cell Permeabilization Using Supercritical Carbon Dioxide

Loading...
Thumbnail Image

Date

2001

Authors

Ng, Matthew

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Supercritical fluids have unique properties which may make them ideal as reaction media for biotransformation or extractive solvents. Supercritical fluids are ideal for reducing diffusivity limitations over conventional fluids. Depending on the polarity of the fluid, a supercritical fluid can be similar to conventional organic solvents, but with few of the environmental drawbacks. The use of supercritical fluids in enzymatic research has the advantage of removing mass transport limitations so that they can act as a suitable solvent. In this study, four permeabilization techniques were compared: control, toluene, supercritical carbon dioxide, and freeze/thaw cycles. The model cell systems studied were Z. mobilis and E. coli. The cells were analyzed for lipid profiles, recovery of proteins and enzymatic activity. The use of supercritical carbon dioxide may not be the most effective of the treatments based on total protein or enzyme recovery since the greatest protein and enzyme recovery was with the freeze/thaw treatment. However, it can be selective in removing cofactors from Z. mobilis enabling sorbitol production and minimizing side reactions. In this application, supercritical carbon dioxide does show an advantage over the freeze/thaw treatment. Aspects of the mechanism of permeabilization were investigated based on the lipid profiles of the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM show changes of the cell surface morphology which indicate that the treatments affect the cellular surface. The use of supercritical carbon dioxide as a reaction medium was investigated. Minute quantities of sorbitol were produced when Z. mobilis and sugars were placed in a supercritical carbon dioxide environment over a period of 24 hours.

Description

Keywords

Mechanical Engineering, supercritical carbon dioxide, sorbitol, zymomonas mobilis, cell permeabilization, escherichia coli

LC Keywords

Citation