UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Fundamental Characteristics of Turbulent Opposed Impinging Jets

Loading...
Thumbnail Image

Date

2000

Authors

Stan, Gheorghe

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

A fundamental study of two turbulent directly opposed impinging jets in a stagnant ambient fluid, unconfined or uninfluenced by walls is presented. By experimental investigation and numerical modeling, the main characteristics of direct impingement of two turbulent axisymmetric round jets under seven different geometrical and flow rate configurations (L*= L/d = { 5, 10, 20 }, where L is nozzle to nozzle separation distance and d is nozzle diameter, and Re = { 1500, 4500, 7500, 11000 }) are discussed. Flow visualization and velocity measurements performed using various laser based techniques have revealed the effects of Reynolds number, Re, and nozzle to nozzle separation, L, on the complex flow structure. Although locally valid, the classical analysis of turbulence is found unable to provide reliable results within the highly unstable and unsteady impingement region. When used to simulate the present flow, the assessment of the performance of three distinct k - epsilon turbulence models showed little disagreement between computed and experimental mean velocities and poor predictions as far as turbulence parameters are concerned.

Description

Keywords

Mechanical Engineering, opposed impinging jets, turbulent jet, jet

LC Keywords

Citation