Show simple item record

dc.contributor.authorSalgado Patarroyo, Ivan Camilo
dc.date.accessioned2013-09-03 19:20:12 (GMT)
dc.date.available2013-09-03 19:20:12 (GMT)
dc.date.issued2013-09-03T19:20:12Z
dc.date.submitted2013-08-29
dc.identifier.urihttp://hdl.handle.net/10012/7847
dc.description.abstractDespite the immense advances of science and medicine in recent years, several aspects regarding the physiology and the anatomy of the human brain are yet to be discovered and understood. A particularly challenging area in the study of human brain anatomy is that of brain connectivity, which describes the intricate means by which different regions of the brain interact with each other. The study of brain connectivity is deeply dependent on understanding the organization of white matter. The latter is predominantly comprised of bundles of myelinated axons, which serve as connecting pathways between approximately 10¹¹ neurons in the brain. Consequently, the delineation of fine anatomical details of white matter represents a highly challenging objective, and it is still an active area of research in the fields of neuroimaging and neuroscience, in general. Recent advances in medical imaging have resulted in a quantum leap in our understanding of brain anatomy and functionality. In particular, the advent of diffusion magnetic resonance imaging (dMRI) has provided researchers with a non-invasive means to infer information about the connectivity of the human brain. In a nutshell, dMRI is a set of imaging tools which aim at quantifying the process of water diffusion within the human brain to delineate the complex structural configurations of the white matter. Among the existing tools of dMRI high angular resolution diffusion imaging (HARDI) offers a desirable trade-off between its reconstruction accuracy and practical feasibility. In particular, HARDI excels in its ability to delineate complex directional patterns of the neural pathways throughout the brain, while remaining feasible for many clinical applications. Unfortunately, HARDI presents a fundamental trade-off between its ability to discriminate crossings of neural fiber tracts (i.e., its angular resolution) and the signal-to-noise ratio (SNR) of its associated images. Consequently, given that the angular resolution is of fundamental importance in the context of dMRI reconstruction, there is a need for effective algorithms for de-noising HARDI data. In this regard, the most effective de-noising approaches have been observed to be those which exploit both the angular and the spatial-domain regularity of HARDI signals. Accordingly, in this thesis, we propose a formulation of the problem of reconstruction of HARDI signals which incorporates regularization assumptions on both their angular and their spatial domains, while leading to a particularly simple numerical implementation. Experimental evidence suggests that the resulting cross-domain regularization procedure outperforms many other state of the art HARDI de-noising methods. Moreover, the proposed implementation of the algorithm supersedes the original reconstruction problem by a sequence of efficient filters which can be executed in parallel, suggesting its computational advantages over alternative implementations.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectHigh Angular Resolution Diffusion Imagingen
dc.subjectImage de-noisingen
dc.subjectImage reconstructionen
dc.subjectDiffusionen
dc.subjectMRIen
dc.subjectTotal variationen
dc.subjectDiffusion Imagingen
dc.subjectSpherical image reconstructionen
dc.titleSpatially Regularized Spherical Reconstruction: A Cross-Domain Filtering Approach for HARDI Signalsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages