UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Critical Investigation of the Pulse Contour Method for Obtaining Beat-By-Beat Cardiac Output

Loading...
Thumbnail Image

Date

2001

Authors

Matushewski, Bradley

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The purpose of this study was to explore the efficacy of two existing pulse contour analysis (PCA) models for estimating cardiac stroke volume from the arterial pressure waveform during kicking ergometer exercise and head-up tilt manoeuvres. Secondly, one of the existing models was modified in an attempt to enhance its performance. In part I, seven healthy young adults repeated two submaximal exercise sessions on a kicking ergometer, each with three different sets of steady-state cardiac output comparisons (pulsed Doppler vs. pulse contour). Across all exercise trials regression results were found to be PCA = 1. 23 x Doppler-1. 38 with an r2 = 0. 51. In part II, eight young and eight older male healthy subjects participated in a head-up tilt experiment. Cardiac output comparisons were again performed during the supine and tilt conditions using pulsed Doppler and pulse contour cardiac output. Regression results revealed that PCA performed best during supine conditions and preferentially on the older subjects. In all instances, impedance-calibrated pulse contour analysis will provide reasonable beat-by-beat cardiac output within very narrow confines and will result in a progressively more significant bias as cardiovascular dynamics change. In addition, it appears that heart rate variability negatively influences beat-by-beat pulse contour cardiac output results, further limiting application of existing models.

Description

Keywords

Health Sciences, pulse contour analysis, cardiac output, Doppler, carbon dioxide rebreathing, exercise, head-up tilt

LC Keywords

Citation