UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Simulations of semiconductor laser using non-equilibrium Green's functions method

Loading...
Thumbnail Image

Date

2012-04-11T15:36:09Z

Authors

Miloswzewski, Jacek

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

A novel method of simulating edge-emitting semiconductor lasers in a non-equilibrium steady-state is developed. The simulation is based on a non-equilibrium Green's function (NEGF) method. The Dyson equation (central equation of this method) is derived and written in a basis suitable for numerical implementation. The electron-photon self-energy is derived form scratch for the case of the edge-emitting laser. Other interactions present in the simulation are phenomenological scattering and scattering due to longitudinal optical phonons. This microscopic approach significantly reduce the number of phenomenological parameters needed to simulate laser. As an example, the theory is applied to analyze quantum well laser with the effective mass Hamiltonian. The major laser characteristics such as modal gain, threshold gain, carrier and current densities are determined.

Description

Keywords

NEGF, laser

LC Keywords

Citation