Show simple item record

dc.contributor.authorEkpenyong, Olufisayo
dc.date.accessioned2011-01-20 15:33:23 (GMT)
dc.date.available2011-01-20 15:33:23 (GMT)
dc.date.issued2011-01-20T15:33:23Z
dc.date.submitted2011
dc.identifier.urihttp://hdl.handle.net/10012/5740
dc.description.abstractMonitoring and debugging distributed systems is inherently a difficult problem. Events collected during the execution of distributed systems can enable developers to diagnose and fix faults. Process-time diagrams are normally used to view the relationships between the events and understand the interaction between processes over time. A major difficulty with analyzing these sets of events is that they are usually very large. Therefore, being able to search through the event-data sets can enable users to get to points of interest quickly and find out if patterns in the dataset represent the expected behaviour of the system. A lot of research work has been done to improve the search algorithm for finding event-patterns in large partial-order datasets. In this thesis, we improve on this work by parallelizing the search algorithm. This is useful as many computers these days have more than one core or processor. Therefore, it makes sense to exploit this available computing power as part of an effort to improve the speed of the algorithm. The search problem itself can be modeled as a Constraint Satisfaction Problem (CSP). We develop a simple and efficient way of generating tasks (to be executed by the cores) that guarantees that no two cores will ever repeat the same work-effort during the search. Our approach is generic and can be applied to any CSP consisting of a large domain space. We also implement an efficient dynamic work-stealing strategy that ensures the cores are kept busy throughout the execution of the parallel algorithm. We evaluate the efficiency and scalability of our algorithm through experiments and show that we can achieve efficiencies of up to 80% on a 24-core machine.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectparallel searchen
dc.subjectconstraint satisfaction problemen
dc.subjectdistributed debbuggingen
dc.subjectmonitoring distributed systemsen
dc.titleParallel Pattern Search in Large, Partial-Order Data Sets on Multi-core Systemsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeMaster of Mathematicsen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages