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Abstract

Monitoring and debugging distributed systems isenently a difficult problem. Events
collected during the execution of distributed systecan enable developers to diagnose
and fix faults. Process-time diagrams are normadigd to view the relationships between
the events and understand the interaction betwemegses over time. A major difficulty
with analyzing these sets of events is that theyusually very large. Therefore, being
able to search through the event-data sets carleenabrs to get to points of interest
quickly and find out if patterns in the datasetresgnt the expected behaviour of the
system.

A lot of research work has been done to improvestrach algorithm for finding
event-patterns in large partial-order datasetshis thesis, we improve on this work by
parallelizing the search algorithm. This is usedsl many computers these days have
more than one core or processor. Therefore, it maense to exploit this available
computing power as part of an effort to improve $peed of the algorithm. The search
problem itself can be modeled as a Constraint faatisn Problem (CSP). We develop a
simple and efficient way of generating tasks (teekecuted by the cores) that guarantees
that no two cores will ever repeat the same wofeireéluring the search. Our approach is
generic and can be applied to any CSP consisting lsirge domain space. We also
implement an efficient dynamic work-stealing stggteéhat ensures the cores are kept
busy throughout the execution of the parallel athor. We evaluate the efficiency and
scalability of our algorithm through experimentsdashow that we can achieve

efficiencies of up to 80% on a 24-core machine.
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Chapter 1

Introduction

Applications developed to run with various compdsemm several computers have been
around for many years. The benefits of such disteith applications are important to both
software engineers and end-users. To software een distributed systems make it
possible to design applications in which componangsdecoupled. This makes software
maintenance and re-use more feasible. To the esd;udistributed systems are more
scalable and provide a lot of performance bendfitaddition, the prevalent use of multi-

core computers has also increased the desire foe applications to work seamlessly

across several cores.

1.1.Problem Statement

The benefits of distributed systems are accompabjedhallenges. Such systems are
more complex than standalone applications and amee rohallenging to monitor and
debug. This complexity arises from the unpredi@diehavior of the system, caused by
the execution of concurrent programs and the alesehany guarantees about the way
their execution will interleave. This makes it mailifficult for developers to reproduce a
problem, thereby increasing the time and effortunegl to diagnose and fix a bug.

In order to aid the debugging of distributed systethey are usually set up to
emit logging information that describes their exemu These logs are usually very large

containing a copious amount of events. This makasadre difficult to analyze and



understand the execution history of the system wimgimg to fix faults. Another
difficulty with analyzing such logs is that distuted systems have no global clock.
Therefore, when comparing the timestamp of an ewentirrence on one computer to
that of another event that occurred on another coenpone may come to erroneous
conclusions because these timestamps may not aebgssflect the order in which the
events actually occurred. To this end, severalstdwve been developed to make

debugging of these systems easier. This thesiséscon improving one such tool.

1.2.Thesis Contributions

In this thesis, we improve a monitoring and debogdool called the Partial-Order Event
Tracer (POET). POET is capable of representingetecution history of distributed
systems in a partial-order using logical timestantipprovides facilities for both offline
and online monitoring of the system, viewing pracedstractions or clusters, and
viewing abstract or compound events. In additio@EF provides an expressive
language that enables users to specify complexrpattand search for them in large
event datasets. This can be useful when diagnofanifs such as performance
bottlenecks, race conditions or improper accessresburces arising due to poor
synchronization among threads. Extensive reseamhk thas gone into the development
of this tool [8, 13, 22, 25, 32, 35, 36, 39, 42f more improvements are needed.

Our work focuses on improving the search algoritbnfinding event patterns of
interest by parallelizing the algorithm for exeoution a shared-memory multi-core
system. As we will see later, the search problefQET can be modeled as a Constraint
Satisfaction Problem (CSP) and we use this model laasis for developing an efficient
parallel algorithm. The main thesis contributions as follows:

a) We employ the technique introduced by Habbas ef28l. for distributing the
search space (i.e., the large event dataset) evieral tasks that can be handled by
various cores. We extend Habbas’ technique by deugl a method for task
distribution that can be applied to CSPs with gdadomain space. We include



rules to be used during task generation in ordeavimid duplicate work-effort
among the cores.

b) We analyze two approaches for search-space distmbuand make a
recommendation as to which approach is more seitédnl the pattern-search
problem in POET.

c) We provide optimizations to the parallel algoritiimorder to deal with patterns
that have certain unique properties.

d) In order to ensure that all processors are busugirout most of the algorithm’s
execution time, we develop a hybrid method of tdsitribution by initially
dividing the search space into tasks before procedsegin the search and then
allowing processors to steal work from others asythecome idle, otherwise
called dynamic work-stealing.

e) Finally, we show in experimental results that ttegatiel algorithm is scalable

providing efficiencies of up to 80% on 24 cores.

1.3. Thesis Overview

This thesis is organized as follows: Chapter 2 ples an overview of POET, detailing
its architecture and its major features. It inckidbe algorithm used for generating
logical timestamps, the language used for repreggpivent patterns, and the algorithms
used in the search. Chapter 3 introduces relate# imothe area of parallelizing CSPs.
Chapter 4 describes in detail the approaches wel@gsd for generating tasks, the rules
involved, and the optimizations to the parallel caithm. Chapter 5 shows the
experimental results obtained from the parallebatgm and makes recommendations on
the number of tasks to generate given a certainbeurof cores. Chapter 6 describes the
dynamic work-stealing algorithm used for load-balag. It also includes some
experimental results of the work-stealing algorittam well as tests showing the
scalability of the parallel algorithm. We concludéth Chapter 7, which provides a
summary of the results and identifies areas ofréutuork.



Chapter 2
Event Models in Distributed Systems

2.1.Debugging Distributed Systems

As previously mentioned, debugging distributed exyst is a very hard problem
and several techniques have been explored in daodeackle this problem. Offline
approaches describe the situation where logs filwendistributed system are analyzed
after the system’s execution has terminated. A comapproach is for the various nodes
in the system to send log information to a cergeaver. The logs can then be retrieved
from the server and analyzed for violations of gpeproperties. Certain tools like Pip
[34] make it possible to specify the requirementsthe system beforehand using a
declarative language and then the logs can be eHdedkr violations of these
requirements. Although there is only a small perfance overhead due to local logging
with this kind of approach, it may be generallyfidiilt for a programmer to specify the
requirements of the system using the language.

Another offline approach generally used is theaggechnique [16, 28, 41, 42].
In this case, trace information is collected frdra various nodes and the execution of the
system can be replayed in order to reproduce nterrdenistic errors such as race
conditions. There is generally a lot more overhegatbgging, as more information is
necessary in order to replay the execution patheftleployed system. It is also difficult
to replay certain events such as shared-memorysaamethread scheduling. Another
approach to distributed debugging involves the afs@rtual machines [21, 28]. In this
approach, there is a virtual machine located abttne hardware, and between the

4



application and the operating system. The nodeshéndistributed system and any
network latencies are then simulated on the virtnachine. This approach provides
flexibility in debugging (for example, nodes in tlsgstem may be slowed down or
stopped when trying to reproduce a race conditiba),it may be difficult to efficiently
simulate all the nodes in a large distributed syst@ one machine.

Online approaches to debugging usually involve 8ggecifying properties of the
system that should not be violated and then chgctie system for violations of these
properties during execution. This method usualsplnes taking a consistent snapshot of
the execution and checking for violations in thatetrecorded in a snapshot. One
challenge involved here is understanding what sfzenapshot is adequate, i.e., a global
snapshot across all nodes in the system or jus¢ighbouring nodes [27, 40]. Also, a lot
of care must be taken in order not to introducennaeh performance overhead that will
significantly alter the normal execution of thetdisuted system.

In this thesis we focus on the offline approacHistributed debugging by making
use of the Partial-Order Event Tracer (POET). PQ&@a tool that was developed to
collect and analyze large traces from distributestesns. POET supports both the offline
and online approaches to monitoring and debuggstglilited systems. It was originally
developed in 1991 by the Shoshin Research Grouptrenoriginal implementation was
written in C and C++. An alternate implementatienwritten in Java as a plug-in to
Eclipse [1]. This thesis uses the Java versioneddtclipse POET. In the next section,

we discuss the architecture of POET in detail.

2.2.POET Architecture

POET itself is a distributed system consisting e¥esal processes. The target
programs being instrumented submit events to tlemteserver. These events provide a
good view of the execution history of the prograifise event server interacts with a
viewer and a checkpoint process (described beldig. viewer communicates with the
event server to retrieve POET events and then tamgss the events in order to display

them on a process-time diagram.
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Figure 2.1: The Architecture of POET

In distributed systems, a process-time diagramseduo visually represent the

interaction between processes that occurs througssage passing via “sends”,

“receives” or some other sort of messages. Figukeshows an example of such a

diagram. Each horizontal line referred to as ac#faepresents a process’s execution in

time advancing from left to right. A unary eventsd®wn in the diagram is one that is

not involved in any interaction with other process& synchronous event is viewed as a

single event that occurs simultaneously on two ggees with the message exchange

occurring at the same time on both processes.cétdirected lines between two single

events are used to represent synchronous commionicaisynchronous events are

viewed as originating from one process and ternmgatn another, and they are used to

model asynchronous communication between two psesesSlanted directed lines

represent asynchronous communication.
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Figure 2.2: A Process-Time Diagram

In order for the viewer to draw the process-timegdams, the events must first be
timestamped. Timestamping is done using vector diamps (as introduced by Fidge
[15] and Mattern [29]) which grow in size as thenher of processes increases. Though
more time-consuming, timestamping the events iednnthe viewer because performing
it at the server would require a lot of disk spagestore the timestamps. Due to the
runtime costs of timestamping at the viewer, thec&pointer process receives each event
from the server and timestamps it. It then perialijcwrites out a snapshot of the
internal state of the timestamping algorithm. Thesapshots are subsequently used by
the viewer to speed up the process of timestanthimg@vents when drawing the display.

POET was developed to be target-independent asdighachieved through the
use of target-descriptor files. These files aralusedescribe the native events emitted by
the target programs and map them to POET even&seVént server converts the events
into binary raw-event format in EF files. Theseedilcan be converted into a more
portable format stored in ASCII text in a UEF fikes we will see later, these UEF files

can be imported into the viewer in Eclipse POET disg@layed on the screen.



2.3.Event Precedence

POET uses Fidge/Mattern vector timestamps in aefficiently determine the
precedence relationships or causality between pvenevents. Developed by Fidge [15]
and Mattern [29], vector timestamps make it possibb determine precedence
relationships between events in constant timehikthesis, we focus on two precedence
relationships: the happened-before and concuredsionships as introduced by Lamport
[26].

Definition 2.1:
The happened-before relation is denoted-hyand a primitive event is said to happen
before another primitive event if any of the folliog holds:

1. If aandb are events on the same processaadcurs beforé, thena — b.

2. If ais the send event representing the sending ofssage by one process and
is the receive event representing the receipt af thessage on another process,

thena — b.

3. The happened-before relation is transitive, ifea,+ b andb — cthena — c.

Definition 2.2:

The concurrent relation is denoted by ||, and enipvie event,a, is concurrent with

another primitive eventy, if a does not happen befdbeandb does not happen befoae

(.e,a!= bAb!-a).

Definition 2.3:
Where a pair of events indicates a synchronousynaaronous communication between

two traces, we say that one event is phetner of the other. Partner events are denoted
by a.b.



The above definitions are sufficient to define te&ationship between primitive

events. It is however useful to note that when rdeiténg precedence relationships, we

are mostly interested in comparing primitive evdahts are not equal. A primitive event

is uniquely identified by a trace number and améveimber, so an event denotedaas

implies that this is the second event that occuardhe first trace (i.e., the subscript is

the trace number and the superscript is the evemtber). To determine precedence

relationships, associated with each primitive eveiat timestamp vectoy, of n integers,

wheren is the number of traces in the distributed sysbemng monitored. Each process,

Pi, maintains a local clock vector denoted@yof sizen which is used for timestamping

primitive events. In POET, primitive events are éstamped following the algorithm

proposed by Fidge as shown below:

1. Each clock vectorC; is initialized to zero at the beginning of the gartation for

each procesB,.
. Whenever procedd performs a unary eveast its local clock is incremented by 1
and the timestamp of the evantis equivalent te;, i.e.,

Cilil=C[]+1

Va=G

. When a procesB; sends an asynchronous message represented byetite,eit
updates its local clock and timestamp as for urewgnts and attaches the
timestamp to the message.
. When a procesB; receives the asynchronous message with the timpstaow
denoted a<€;), it increments position of C; and positiorj of its local clock,C;,
by 1 and update the entries@to the maximum of its current value and the new
values inC;. If b is the receive event then its timestaiip will be set to the
updated value of;. Formally

Clil= CT]+1

Gll=¢Gll+1

Vp € {1,...n}, Glp] = max(G [p], G [p])

Vp=GC



5. If ais a synchronous send eventpfandb is the corresponding receive event on
P;, then the local clock€; andC; are set to the maximum of each of the entries in
Ci andC;. This can be achieved by the receiver sendingnéirotation message
with its local vector clock back to the senderlsat the sender can update its local
clock.
Ci [i] = Ci [i] + 1, sender updates local clock upon sendirgsage

Cilill = G [J]] + 1, receiver updates local clock upon receipt

Vp € {1,...n}, Va[p] = Vi [p] = max(G[p] , CGip])

As an extension to Fidge’s algorithm, Cheung [1&Jposed that in preparation
for the next event, the processes involved in treclsronous communication
should increment the element in its local clockhaf partner process, i.e.,

Cll=Gll+1
Glil=Glil+1
a; (1,0,0) a’ (2,2,0) a; (32,3

Py

° °

2
a’ (0,2,0
ag (0,1,0 2 (0.2.0)

P .\
a’ (0.0,1) a’(0,02) o (323) \‘:;‘(4,3,4)
Ps ® @ ¢

Time

v

Figure 2.3: Fidge/Mattern Timestamps Example
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Figure 2.3 shows an example of a process-time amgwith the vector
timestamps following the algorithm above. Here we thata! is an example of a unary
event and following Step 2 of the algorithm, ithéistamp will be (1,0,0). According to
Step 4, wherP; receives the asynchronous message firarit will increment its local
clock to (2,0,0) and the timestamp frdfa to (0,2,0). Taking the maximum of both
clocks will yield a timestamp of (2,2,0) for thecetve eventa?. For the synchronous
message froniP; to P3, Step 5 will be applied. The local clock Rt upon sending the
message is (3,2,0). Upon receipt of the eveRgaits clock will be set to (0,0,3). Taking
the maximum of each entry of the two clock#a(i.e., maximum of (3,2,0) and (0,0,3))
will yield a timestamp of (3,2,3) for the receiveeat, a. Pz will send a confirmation
message t®; along with its local clock enabling; to update the timestamp fa¢ to
(3,2,3). BothP; andPs will increment the other’s entry in their local cks according to
the rule by Cheung. Hence, the receive ee¢ratPs is (4,3,4) and not (3,3,4).

The vector timestamps enable us to determine tleedence relationships
between primitive events in constant time. To detee if an eventa, occurring on
processP; happens before another evamtoccurring on proces;, we simply need to
check ifV4[Pi] < V[P]. If this is the case them happens befork. If this is not the case
and Vy[Pj] < V4[P], thenb happens befora. To test for concurrency betwearandb,
then we simply need to check that the t&{#;] < V,[Pi] and Vp[Pj] < V4[P;] are both
false. To check if two primitive evenigandb are equal we would need to compare their

trace and event numbers. In the example aboveaweletermine that happens before

a; becaus&/y [P = Vaz[3] =2 <3 =Va3[l] = Vaf[Pl]- Similarly, we compute that

& andal are concurrent becauset and 1« O.

Process-time diagrams are helpful in enabling tieelbper to visually inspect
the interaction between processes and thereforgidgrouseful information when
monitoring and debugging distributed systems. Tike of the event data-set however
makes it impossible to fit the entire executiontba screen and scrolling through it is
also cumbersome. Several approaches have beerigated in order to deal with this
problem. One approach is through event abstraciuh the other is by searching for

event patterns in the data-set (otherwise knowpattern-search).
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In event abstraction, primitive events are groufmggther into a meaningful unit
called an abstract or compound event and displgyaghically. Kunz [25] developed an
approach to automatically combine a number of pimaievents, possibly from various
processes, into a single abstract event. Other ahamusemi-automatic approaches that
allow the user to specify which events to absteaeay were investigated by Seeleman
[35] and Seuren [36]. Graphically, an abstract ewefOET is represented by a vertical
rectangle that stretches over all the processesiviedt in the event. The intersection
between the rectangle and a process that is pathi®fabstract event will be filled,
otherwise an open intersection signifies that nene¥rom the process belongs to this
abstract event. For example, in Figure 2.4 priraiggvents from processBs, P,, andPs

make up the first abstract event.

P, ] o

P, . H

o, ®

m U

Ps B

3 ./ é
Time ”

Figure 2.4: Abstract Events View

Certain complications arise when defining precedenelationships between
abstract or compound events. In event modelingdfstributed systems the following
have been proposed for defining the precedenceamsthips between compound events
[22, 25].
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Definition 2.4:
A compound eventA, happens before another compound evBnif all the primitive

events inA happen before all the primitive eventBinFormally

A—-B< Vae A VYVbeB,a— bh.

Definition 2.5:
A compound eventA, happens before another compound evBntif there exists a
primitive event inA that happens before another primitive ever.ikformally

A—- B Jac A dbeB,a— b

Definition 2.6:

A compound eventA, is concurrent with another compound evdtjf neither event

precedes the other, i.e.,

AllB= Al-BAB!— A

The first definition of the happened-before relasibip (Definition 2.4) was found
to be easier to deal with as it maintains the ghxrder relationship between both
primitive and compound events. It was however fotmde too restrictive as it was
sometimes impossible to define happened-beforéarthips between compound events
that were clearly related. The second happeneddefefinition (Definition 2.5) was

found to be more intuitive though it requires maverk to deal with as it breaks the

transitivity property, i.e., iR — B andB — C, it does not necessarily mean that- C.

The definition also contradicts the partial-ordetationship as it is possible for a
compound ever to happen beforB and forB to happen beforA. In order to deal with

these problems, Kunz [25] introduced the idea ofijgound events that acenvex
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Definition 2.7:

A compound event made up of a set of primitive é&vEns said to be convex if and only

if VX, yeE, x—-z—-y=>zcE.

Definition 2.8:

Event set#\ andB are disjoint< AN B =

Definition 2.7 implies that in a convex event detre are no intervening events
that are not included in the set. In Figure 2.%, $let of open-circled events is a non-
convex compound event as the dark-filled evenhigtervening event. By including the

dark-filled event, the compound event set becornasex (See Figure 2.6).

P, O O N

P, Y

Ps O O U
Time

Figure 2.5: Non-Convex Compound Event

14



P ) )
3 N\ N\

Time

Figure 2.6: Convex Compound Event

By restricting compound events to the set of evémis are convex and disjoint
(see Definition 2.8), it is possible to maintaire tpartial-order relationship between
compound events (except for transitivity) for eveets that do natrosseach other (see

Definition 2.9 [32]). In other words, given two ocoex compound event sedsandB, it is

still possible forA — B andB — A to both be true iA andB cross each other.

Definition 2.9:
The event seA crosses another event 8&et=dxo € A, Yo €EB A X0 — Yo A dxg € A,

dy1 € B A y1— X3 A Ais disjoint fromB.

Definition 2.10:

The event seA overlaps the event sBt< AN B + J

Following Definitions 2.9 and 2.10, two event sats said to bentangledf they either

cross or overlap each other. The entanglement tpera is used to specify that event

sets are entangled [32].
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Definition 2.11:

A — B < Acrosse® v AoverlapB

Definition 2.12:

A + B < Adoes not crosB A A is disjoint fromB

By ensuring that event sets are not entangledfdll@ving modification to the

happens-before relationship between compound ehertsbeen proposed [32].

Definition 2.13:

A—- B dacA dbeBAra—-bAA-+B

The introduction of compound events is not onlyfuiserhen abstracting away
primitive events to aid visualization of the pros¢sne diagrams, but also when
searching for event patterns. Pattern-search ithan@pproach used to cope with the
large set of events emitted by distributed systeRatern-search allows the user to
specify event patterns that are of interest usingatiern language and then a search
algorithm finds these patterns in the data-setdasplays them to the user. Pattern-search
essentially allows the user to jump to points @&liast on the screen. The next sections
discuss in detail the pattern language used fanidef a pattern and the algorithms used

to find matches to the pattern.

2.4.Pattern-Search in POET

Before being able to search for events, there hesh well defined way of specifying

what is to be found. This is achieved using a pati@nguage. There has been extensive
research work focusing on defining pattern langsatl@t can be used to search for
events from distributed systems [22, 32]. The commarts of the proposed languages

are the need for a way to specify attributes oéaent, compound events or event classes,
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precedence and concurrency relationships, and a twagombine various pattern

components. The following sub-section describegpditern language used in POET.

2.4.1.The Pattern Language

In the POET pattern language, the most basic eleaifghe pattern is the event class. An
event class is represented by a 3-tuple that deescithe process in which the event

occurs, the type of the event (e.g., send or regeand an additional text for including
useful information. The tuple is represented‘agprocess>", “<type>", “<text>"]. For
example, a tuple with all entries empty, ", “"], would capture all the primitive events

in the data-set while a tuple such[&s”, “*, “"] represents all the events occurring on
process “P1”. An event class that has a partnemtestass would be represented by two

3-tuples separated by a period.

The operators in the language are the happenedeb@io precedence—(),

concurrent (||), and entanglement () operators and they specify the constraints batwe

the event classes forming dause Another element in the language is the logical

operators ORY) and AND (7). These are used to combine the clauses to spacifg

restrictions on the pattern. For example, a sirppltern such a#A(— B) ||C A (B — C)

implies that the search algorithm would find themg from event clasa that happen
before events fronB and are concurrent with events frdda Moving on to the next
clause, the search algorithm would then find evéots B that happen before those from
C. Note that the set of events froBrand C that satisfy the second clause do not
necessarily have to be the same set of events Bramd C that satisfy the first clause.

Most of the initial building blocks of the pattdanguage were introduced by Jaekl [22].
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predicates=

predicate =

clause =

=

basicOperator>

booleanOperatoe

variable =
id =
alpha =
alnum =

string =

(predicate “;")*
id “:=" clause
id variable (“,” variable)*

term basicOperator term

term “!” basicOperator term

term booleanOperator term

variable
class
class.class

“(" clause *)”

“[’process “,” type “,” text “]”
[“$”, “*, “~"]id
alpha(alnum)*

[‘a” — 2", “A” = 2", “ 7]

[“a” = 2", “A" = “Z", * ", “0" — “9"]
Q" — “2", “AT = “Z", 7, 07— 97, 7,

Figure 2.7: Grammar for the POET Pattern Language
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Nichols [32] introduced the use of variables to plagtern language, which affect
how the pattern-search algorithm works. A dollgmnsis, is used to specify a variable
belonging to an event class and allows the sedggrithm to bind the primitive events
from that class to the variable. This enables tiaipve events to be used as the search

progresses. To illustrate further, in the previewample, we could replace the event class

B with a variable$b resulting in the patterrA(— $b) ||C A ($b — C). For this pattern,

the search algorithm will behave differently. Hetlge primitive events belonging ®
that satisfied the constraints in the first clansast be used in satisfying the second
constraint. This is more intuitive for the user ang@robably more desirable.

Variables could be marked with a universal quaati{). This implies that the
chosen primitive event in the given clause mussfiaall the primitive events associated

with the variable marked with the universal quaetif For example, given a pattern
$a — *b, with $a and * taken from event classé@sandB respectively, implies that the
event assigned t®a should precede all the events from event cas¥ariables could
also be marked with a tilde, ~, which indicatest tttee events associated with such
variables should not be returned as part of them&o for example, the pattera — B,

associated with event classAsand B respectively, implies that the search algorithm
should find events fronA that happen before events franbut only return the events
from B to the user or the next level of the pattern matgprocess.

The limited operator which was created much ealiedaekl is no longer used
because the introduction of variables and univegsahtifiers is sufficient to replace the
limited operator. The limited operator given in @xample byA g B, means that the
search algorithm should return only eventsAirthat precede events B, where no

occurrence of an event matchi@yhappens both after the match Acand before the

match toB. With universal quantifiers, this pattern can nbog written as{a — $b) A

($a !'—= *c Vv *c!— $b). Figure 2.7 shows the grammar for the currentepatanguage

used in POET.
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In POET, patterns are specified in an ASCII plarttfile called the pattern file.
The following table shows a mapping between thenedmotation of the language and its
ASCII format.

Table 2.1: ASCII Format of Pattern Language

Formal ASCII
Happens-before - -->
Concurrent Il Il
AND A &
Limited ASB A-(C)->B

Next, we discuss certain features provided by thtem language that simplify
writing the pattern file and make it easier to readl follow. Consider a distributed
application consisting of a server and two cliesdsxmunicating using TCP sockets. The
clients establish a connection with the server #rah begin sending messages to the
server. Each client sends 20 consecutive messages server (to fill up a buffer) and
then waits until there is space in the buffer befsending more messages. The clients
can also receive messages from the server. Thasltose the connection after a certain
number of messages have been sent. A programmeitomog or debugging this
application can verify the connections made tod@eser using the patterns defined in
Figure 2.8.

In this figure, it is seen that in writing patterr@e can “declare” variables in
much the same way as is done in most programmitgukges. Such declarations make
it easier to refer to patterns in another more dempattern. For example, we see that
“StartConnect” and “DoneConnect” are event clasegzresented by a 3-tuple as
described earlier. “StartConnect” given p¥; “Accept”, “"] means that this event class
would match any events occurring on any proceshk aiit event type of “Accept” and
with any associated description. The following tugfter the period describes the partner
event type “Accept_stream” that is associated wdlch “Accept” event. Line 3 in the

figure declares variable$sc and *sc_all as associated with the “StartConnect” event
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class. “ConnectionEstablished” is a pattern thamesde up of$sc, $dc and *sc_all
variables. Much like “StartConnect”, after “ConnenEstablished” is defined, it can
represent a “type” for declaring other variablessaseen in Line 6 wheree_all and$ce

are declared. Thece_all and $ce variables can then be used in another patterm as i
“FirstConnectionEstablished”. The patterns in Lies/ and 8 enable one to determine
how many clients established connections to theesethe first connection established
and the last connection established, respectiviglys is just an example of what the
pattern language allows users to specify and @ al®ows that the language is flexible

enough to allow writing very complex patterns tbamtain compound events.

StartConnect $sc, *sc_all;

DoneConnect $dc;

ConnectionEstablished := ($sc --> $dc) & ((*sc_all !I--> $dc) | ($sc !--> *sc_all));
ConnectionEstablished *ce_all, $ce;

FirstConnectionEstablished := (*ce_all !--> $ce);

© N o 00k~ wDdE

LastConnectionEstablished := $ce !--> *ce_all;

Figure 2.8: Pattern Language Example

2.4.2.Convex Closure versus Re-written Patterns

We discussed earlier the need to introduce converts in order to maintain the partial-
order relationships between compound events. fngdction, we will see the implication
of searching for events that make use of pattemslving compound events. We
consider two approaches to pattern-search: onetékas the convex closure of the
compound events during pattern matching and anatpproach that reduces complex

patterns into a simpler format.
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Earlier work in POET about searching for pattetrat tontain compound events
involved finding the convex closure of the matchisgf of events during the search
algorithm [8, 39]. Recall that a set of eventsagldo be convex if there is no intervening
event not included in the set that happens beforevent in the set and after another
event in the set. If such an intervening eventtexisen it must be included in the set of
events to make it convex. It is clear from the pyas section that working with convex
event sets that do not cross each other enables make meaningful precedence tests
between compound events and avoid situations wher@mpound event happens both
before and after another compound event. We nowenmovto examine searching for

event patterns that contain compound events.

A B||lC D

Figure 2.9: Pattern Parse Tree

Given the patternA — B) || € — D) as represented by the pattern parse tree

shown in Figure 2.9, the search algorithm beginadsgning primitive events associated

with event classe& andB at the leaves of the tree. These events are ilitered keeping

only those that satisf% — B. The algorithm would then find the convex closaféhese

remaining pairs of events. Similarly, the algoritlwauld find events that match — D

and then find their convex closure. With the conesent sets from the left-hand and
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right-hand side of the tree, the algorithm wouldnttdetermine which events satisfy the
concurrent operator according to Definition 2.6 areturn this set to the user.
Experiments showed that finding the convex closarthe most expensive part of the
search algorithm [8, 32].

Nichols [32] showed that it is possible to elimmahe need for the finding the
convex closure by rewriting the pattern (based entain rules) into a simpler format that
consists of at most a 2-level hierarchy. The raamitpattern would consist of a set of
happens-before relations in conjunctive normal fq@NF). Rewriting is done using

Definition 2.5 of compound events. For examplegegithe patternX — B) || € — D),

we begin from left to right and rewrite the patteas follows. The first component,

A — B, will be assigned variables and re-writtensas— $b. The same will be done for

the next component to geic — $d. Then by definition of concurrency between

compound events (Definition 2.6), we can exparal ghttern and add the following

restrictions:$a '— $c, $a !— $d, $c !'— $a, $d !— $a, $b !— $c, $b !— $d, $d !'— $b,

$c !'— $b, $a # $c, $a = $d, $b # $c, and$b # $d. The conjunction of all these

constraints will form the re-written pattern.

Furthermore, patterns containing variable modifartogical operators like *, ~,

I, v, and A can be rewritten by applying the definition for qooond events, De

Morgan’s laws, and the mathematical methods fowvedimg boolean expressions into
CNF form. Though re-written patterns tend to beywesrbose, experiments showed that
pattern-search using this approach is substantiaditer than finding the convex closure
[32]. For this reason, we only consider re-writpatterns in this thesis.

Having gone through some background information dlescribes the application
used in this thesis, we move on to previous rebeanrk that is more closely related to
the focus of this thesis. We formally define thdtgram-search problem and provide a
good theoretical background that will enable udpétter understand how to parallelize

the pattern-search algorithm.

! Example taken from page 101 of Matthew Nicholg'sik [32].
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Chapter 3

Related Work

Several problems such as the pattern-search prolsieROET can be formalized as
Constraint Satisfaction Problems (CSPs). In thistice, we define CSPs, and then
briefly describe current sequential algorithms us®dsolving these problems. Finally,

we discuss how to parallelize the algorithms fdvisg this class of problems.

3.1.Introduction

A CSP is defined by a set of variablsa set of constraintS, and a set of domairi3.
Each domain is associated with a variable and omntéhe allowable values for the
variable. Solving a CSP involves finding an assigntof values to the variables in order
to satisfy the given set of constraints. More fdiypaa CSP is given by the following
definition [31].

Definition 3.1:

A Constraint Satisfaction Probleiis given as a tuple = (X, D, C, R) where
. X={Xxy, %, ..., %} is a set oh variables.
= D={Dy, D, ..., D} is aset ohdomains and eadb is associated with;.

= C={Cyq G, ..., G} is a set oin constraints where each constraiits defined

by a set of variablefii, Xiz, ..., %, } € X.
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* R={Ry, R, ..., R} is a set oim relations where each relatiétidefines a set of
n-tupleson Di; X Dz X ... X Oy, compatible with respect 1G;. In other words, a
relationR; defines the combination of values for each ofwtaeables that satisfy

a constrainC,.

CSPs are NP-complete [12] because they requirlaaustive search to find a solution
and the most basic approach is to use a naiverhakkig algorithm. In this algorithm,
the first step is to find a valid value to assignthe current variable. Once a value is
found, the algorithm picks the next variable anté a valid value to assign to it that
does not conflict with the previously assigned ale(s). If a valid value cannot be
found, the algorithm backtracks to the last vagadmd assigns another value hoping that
this new value will lead to a successful assignnoérthe next variable. This process is
repeated until all variables have been assignea Miajor limitation of the basic
backtracking algorithm is that it is exponential tre number of variables, therefore
several optimizations have been proposed. For ebeanapheuristic that uses a static
reordering of variables so that a “good” variabdechosen as the first variable for
assignment has the effect of reducing the runtihtbeosearch algorithm [38].

Another more intelligent approach to solving CS®<alled back-jumping [17]
This approach is similar to the naive backtrackatgorithm except that during the
backtrack step, the algorithm jumps to the varidbé is hindering the algorithm from
moving forward. This results in cost savings asalgerithm quickly picks the next value
of the variable that is the point of failure as opgd to simply choosing the next value of
the last variable that was assigned. The naiveidigothat chooses the last variable that
was assigned may slow down the progress of theitdgotowards finding a solution.

Another approach called dynamic backtracking [1§]ai variation of back-
jumping but instead of losing all the work doneeafthe point of failure, dynamic
backtracking preserves this work. In other wordésemw the algorithm “jumps” over
variables that have already been assigned, and¢hassigns a new value to the variable
that is the point of failure, it does not change Walues of the variables that have already
been assigned if they are not in conflict with tiesv value. Several other optimizations

and techniques that exist for solving CSPs [63] a2e beyond the scope of this thesis.
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3.2.Parallelizing CSPs

In addition to optimizing the sequential algorithmaslditional research work has
focused on parallelizing such algorithms as a veayrprove performance [10, 11, 24,
30, 33, 37]. The increased use of multi-core comguthas made it beneficial to
understand how to parallelize current solutionstider to make use of the available
computing power and improve performance. The gbahost parallelized solutions has
been to distribute the problem among several gm@s#gssors ensuring that they are
efficiently utilized in order to get close to adar-speed up as the number of cores
increases.

One of the factors that influences the parallebatgm design is the hardware
architecture of the system. When designing a garalborithm to run on systems with
shared memory and several cores or processorsfothes is usually to prevent
simultaneous access to the shared memory by thiengathreads as this usually results
in performance degradation. On the other handpdoallel algorithms designed to run on
traditional distributed systems where the compuéeesconnected via a network and as
such have distributed memory, the design focussisally to minimize the message-
passing overhead that occurs during the computaliothis thesis, we focus on work
done on systems with shared memory and investitatesearch-tree approach for CSP
parallelization. This approach is currently the mpsomising method of achieving
parallelization. Other approaches such as domaaomndposition [19] which involves

splitting the CSP into several easier sub-probldmeot scale well.

3.2.1.Static Search Tree Distribution

Static search-tree-distribution methods of panziledy CSPs involve modeling the
problem as a tree and splitting it up into subdraepriori. The sub-trees are then
assigned to different threads. In this thesis, eferrto the sub-trees as tasks. In this
approach, each thread has the entire initial C8Blggm and uses an existing sequential

algorithm to solve the problem on a smaller seapdce. Research by Habbas et al. [20,
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24], explored this approach in common CSP problékesthe Langford and Golomb
ruler problems [9, 20].

The search tree represents all possible combirsatbwalues in the domains. A
node in the tree represents a value of a variatileesach level of the tree corresponds to a
variable. Thd-th level of the tree represents all the possilalieies of thd-th variable.
Therefore, given a CSP withvariables, the height of the search tree @&d the values
of variables traversed when going down the treenftbe root node to the leaf node
represent a potential solution to the CSP. FigutesBows an example of the search tree
of a CSP with 3 variables, b, andc. Assuming each variable has a domain sizg, of

then the cost of finding all solutions is at mdst tost of visiting all nodes in the search

tree which iO(k3).

Variable a

Variable b

Variable ¢

Figure 3.1: Search Tree of a CSP

Habbas et al. [20] proposed a generic method oérgging tasks for parallelism
from the search tree. In their method, they chosexplore the search tree up to a certain
depth leveld, which would result in up t&” independent tasks (assuming again that the
domain size of each variableks These tasks are then assigned to the processioig
one of the various task-distribution strategiesused next.

Task Distribution

In distributing the tasks among processors, thenmhallenge is load balancing, which
ensures that all the processors are busy throughewgxecution of the search algorithm.

The difficulty with load balancing is that the weekfort involved in analyzing each task
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usually varies. As such, the tasks are said tantimalanced More specifically, when
traversing a particular sub-tree in a depth-firstnmer, it is possible that the constraints
between variables at shallow points of the tre¢ fai which case the backtracking
algorithm does not need to go further down intottlee. On the other hand, in another

sub-tree the algorithm may need to go deep intotrénme before needing to backtrack.
This results in an imbalanced work-effort when sajwarious tasks.

Variable X;
Variable X3
Variable X3
T1 T2 T3 Ta Ts Te T7 Ts To T1io0 T11 T, | Tasks
Processor 1 Processor 2 Processor 3 Processor 4 Basic
— N ™ < — N ™ < — N ™ <
o o S o o S o o o) o) o) o
7] 7] 7] 7] 7] 7] 7] 7] 7] 7] 1) 17 Modulo
(9] (9] [70) n (%) %) %) (%) %) (%) (%) 0
] ] [0} ] ] [0} ] ] [0} ] ] ]
o (8} (&) (8] (8} (&) (8} (8] (&) (8] (8] (8}
= = e = = e = = e = = =
o o o o o o o o o o o o

Figure 3.2: Task-Distribution Methods

There are various approaches to task distribufidre simplest method is the
basic approach whereby the tasks are evenly diséabamong the processaspriori
(i.e., each processor geumberOfTasks / NumberOfProcesstaisks). The problem
here is that it assumes the work-effort of eack tagjuite similar; as such this method
usually results in poor performance for CSP prolslevith imbalanced sub-trees. Figure
3.2 shows the basic task-distribution method wetlr forocessors.
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Another approach called “Modulo Number of Processaims at balancing the
tasks among processors better and is shown ind-ig@. Here, tasK; is assigned to
Processor 1T, to Processor 2 and continuing until all proces$@ange been given a task
and then the assignment is repeated beginning finenfirst processor [20]. In the third
approach called dynamic task distribution, thera server or shared resource holding all
the tasks and each thread simply requests a néwasn it has completed its current
task. Habbas et al. compared the last two task#ulision approaches on the Langford’s
problem and the dynamic approach performed bdttegeneral, what approach works
best depends on the particular CSP. Basic taskkdisgbn methods incur less overhead
but perform miserably for imbalanced search treegendynamic approaches perform

better, but with some overhead in task distribution

3.2.2.Dynamic Work-stealing

Even with dynamic task-distribution strategiessistill possible to have load-balancing
issues where one processor is busy for an undéesmatount of time while the others are
idle. Therefore, a lot of research has focused wpmanhic work-stealing in which a
processor can give away some of its work to anpdbeessor after the search has begun
[14, 30, 33]. Obviously, this method incurs a lodbrme overhead and so it is important to
have an efficient implementation when using anynfef dynamic work-stealing in order
to improve the overall performance of the algoritHmChapter 6, we develop a work-
stealing strategy for the pattern-search problePOET.
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Chapter 4

Pattern-Search Parallelization

In this chapter we begin by representing the pattearch problem in POET as a CSP
and then we discuss the current sequential algorittsed. We then describe the

algorithm used to parallelize the search.

4.1.Introduction

Re-written patterns in POET are represented in @anijve Normal Form (CNF) which
is a set of disjunctions joined together by zerammre logical-AND operators. So for
example, a pattern-search problem in POET give(sdy- $b v $b — $¢) A ($c !— $d)

A ($a — $c) is a CSP consisting of four variabl&es $b, $c and$d associated with event
classedA, B, C, andD respectively. There are four constrairts:happens-beforgb, $b
happens-beforéc, $c does not happen-befosel, and $a happens-beforéc. The set of
relations here are all the values in event clagsasdB that satisfy the first constraint,
and all the values iB andC, C andD, andA andC that satisfy the second, third and
fourth constraints respectively.

In POET, a solution to a pattern-search probleamigsssignment of events to all
or some of the variables in the pattern. POET aldtwe user to specify the set of
variables for which values are to be returned. iksubsed earlier, a variable marked with
a tilde (~) implies that the primitive events asatail with that variable should not be
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returned to the user. Also, given a pattern theluohes a variable marked by a universal
guantifier (*), the search algorithm would onlyuet events for the other variables not
marked by the asterisk (or a tilde if present).

The pattern-matching algorithm used by POET is tia@ve backtracking
algorithm. Next, we discuss the details of thisoalpm in relation to the pattern-search
problem in POET and expand on the techniques discus Section 3.2.1 to achieve

parallelism.

4.2.Naive Backtracking Algorithm

Given a large set of primitive events belongingaoious event classes and a pattern, the
pattern-search problem involves finding the setpdmitive events that satisfy the
constraints in the pattern. For example, usingptiegious exampléa — $b v $b — $0)

A ($c !'— $d) A ($a — $0), the naive backtracking algorithm walks throughk prattern
from left to right assigning values to the variabkend checking the constraints. If a
constraint is satisfied, it moves on to the nextst@int and assigns new values to
unassigned variables. If a constraint is not satisvith the current assignment, it picks
the next value in that event class and keeps chgdkntil a value that satisfies the
constraint is found. If a value is not found, itck@acks to the variable that was last
assigned and chooses the next value.

Therefore in this example, the algorithm initia#fiarts out by looking at the first
happens-before paita — $b), and assigns a primitive event frahto the variablea,

and a primitive event frorB to the variable&b. It then checks if the event chosen frém
happens before the event fr@dnAssuming that this constraint is satisfied, tlgathm
skips over the second happens-before pair (sinsastfa disjunction, only one happens-

before pair needs to be satisfied) and moves orthéo only happens-before pair,

($c '— $d), in the second disjunction. The algorithm themdirevents fron€ andD that

satisfy the constraint and moves on to the laspéag-before paiffa — $c). Sincesa

and$c have been previously assigned, the algorithm sirdpécks if their current values
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satisfy the constraint. Assuming this is not theecahe algorithm backtracks to the

previous happens-before pagc '— $d) and chooses the next value féd. The
algorithm would have to exhaust all the values fidrbefore going on to pick the next
value for$c. It would then check for an event frdinthat happens after the new value of
$c. When this occurs, the algorithm would move othi last constraint hoping that the
current value foa now happens before the new assignmensdor

Note that there are some inefficiencies with thigoathm, as on the first
backtrack step, it would pick the next primitiveeat from D that satisfies the third
constraint and then move to the last constraintaBpg the precedence check with the
same value assigned $a ands$c. It is only after it has backtracked to the themhstraint
several times and exhausted all the values fofar the current assignment ¢ that it
can pick the next value fro@ and move forward in the search. For now, we igrtbie
inefficiency and simply focus on the basic prinegplbehind the search and how to

achieve performance improvements through paraditetim. Algorithm 4.1 shows a

listing of the algorithm.

4.2.1.Cost Analysis

The backtracking algorithm is an exhaustive seaticht tries all variable-value
combinations in searching for solutions that mdtah pattern. It is easy to see that the
algorithm cost€O(K") wherek is the maximum number of primitive events in arrmv
class anah is the number of variables in the pattern.

32



Algorithm 4.1 : Existing Naive Backtracking Algorithm for Patterea®ch

PN OO N

©

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

// Begin with the first disjunction
position =0
disjunction = conjunction.list.get(position)

/I Get the first happens-before pair in this disjunction
hbpPos =0
hbpPair = disjunction.list.get(hbpPos)
loop forever
if hbpPair.first.isAlreadyAssigned
firstValue = hbpPair.first.current()
else
firstValue = hbpPair.first.next()
/l No more events for this variable
if firstValue is null break
end if

loop forever
if hbpPair.second.isAlreadyAssigned
secondValue = hbpPair.second.current()
else
secondValue = hbpPair.second.next()
if secondValue is null break
end if

/I Check if happens-before relationship is satisfied
if isSatisfied(firstValue, secondValue)
/Istore values
matches.push(firstValue)
matches.push(secondValue)
if position == conjunction.list.size()
/l No more disjunctions, end of search
return matches

end if
position = position + 1
goto line 3

else // constraint not satisfied
/I Get next happens-before pair in the disjuction
if hbpPos < disjunction.list.size()
hbpPos = hbpPos + 1

goto line 6
end if
end if
end loop
end loop
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4.3.Parallel Algorithm

Given a pattern-search problem in CNF, one appréagiarallelizing this problem is to
divide the pattern into several sub-problems amilgaseach sub-problem to a different
thread (i.e., assign disjunctions to different #u®). The partial solutions from each
thread can then be combined into the final solutideally, the sub-problems should be
independent of each other, allowing each threadvéok independently and avoid
communication.

Unfortunately, it is difficult to create independesub-problems as re-written
patterns usually have a lot more constraints themmalles, which makes it difficult to
have sub-problems that do not share variables. engiroblem is that it is difficult to
estimate the work-effort of each sub-problem andise sub-problem could be solved
quickly while another could take a very long tingeich imbalance in work-effort could
leave some threads busy and others idle, which doedulfill one of the goals of
parallelization. For the aforementioned reasons, ieasonable to quickly conclude that
dividing the pattern into sub-problems is not anpising approach. Therefore, we focus
on employing the static search-tree-distributiorthads as discussed in Section 3.2.1 in
order to achieve parallelism.

In static search-tree distribution, the event-datiis divided into disjoint sub-
trees or tasks that are assigned to the workirgptts. Each thread has the entire pattern
and executes the naive backtracking algorithm srown subset of the event data set.
When a thread finds a solution it submits it to aster thread and then continues
searching the current task for more solutions. Upompletion of the current task, the
thread picks up another task. This process is tegeantil all the tasks have been
completed. The main issues we look at are how valelithe data set into tasks, the
number of tasks to generate, and ensuring that meaozess is localized. As mentioned
before, the main goal is to keep the threads busilevminimizing the communication

between threads in order to achieve a high levphddllelism.
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4.3.1.Task Generation

In this thesis, we generate tasks by combining sbarch-tree distribution and task-
distribution techniques described in the previowsknsection. Given a search tree, we
explore two approaches for task generation. Thst &ipproach which we calirouped
starts out by splitting the variables in the patterto two sets. The first set is calléxed
while the other set is callednfixed Recall that the search-tree-distribution approach
creates tasks by exploring certain variables ug particular depthl of the search-tree.
Thefixed set consists of the variables that are initiakplered and hence the size of this
set isd. The remaining variables in the pattern make wgutffixed set. As discussed
previously, the size of the tasks generated byapisroach is at mosf, wherek is the
size of the largest event class. In POET, the vaflecould be over 100,000 events, and
so this approach easily leads to an unmanagealnberuof tasks that consumes too
much memory. There could also be a noticeable paence overhead as threads are
synchronized when picking up their next task. Taidvthis, we extend Habbas’
approach by grouping the initial set of tasks ils@er tasks. We start out with a pre-
configured desired number of tasksnd group the initial set of tasks into approxiehat
equal sizes in order to produ€etasks. Note that this approach is similar to ttaics
method of task distribution, except thatis not always equivalent to the number of
processors.

The groupedapproach of task generation divides the searchiti® relatively
equal sub-trees; however, the work-effort involved running the pattern search
algorithm on each sub-tree usually differs, leadingdling threads. Since one of our
goals is to keep all threads busy, we experimetit avivariation of the “Modulo Number
of Processors” task-distribution approach. We ta$ methodscatteredand here we
start out by having buckets and assign the first task to the firstkbticthe second task
to the next bucket, and so on, until the last buckdilled. The process is repeated by
assigning the next task to the first bucket urtitasks have been assigned to buckets.
The “buckets” then represent the tasks that aregress$ to each thread. Figure 4.1
illustrates the groupeaind scattered task-generation methods.
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Figure 4.1: Grouped vs. Scattered Task-Generation kthods

In our experiments, we compare the two approachddiad that on average the
grouped method performs better because each tagkama the ordering of events as
they occurred in the target application. For mdsthe patterns used, maintaining this
ordering in each task appears to be more favoutaltlee pattern-search algorithm than
striving for more balanced tasks using the scattafproach. More details about the
experimental setup and results are given in Ch&pter

With the approaches discussed, certain questiass, @uch as how to choose the
fixed variables, and what are “good” values f6rand d. In POET, Nichols [32]
introduced a technique for re-ordering the varighbiethe pattern. The variable with the
most constraints is placed at the beginning of ghttern. Using variable re-ordering

resulted in better performance during the patteareh. Therefore, we maintain this
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ordering during parallelization by choosing thesffid variables as the fixed variables
after the pattern has been reordered.

In theory, a “good” value dbis one that is greater than the number of processo
in order to ensure that there are always taskdadlaito keep the processors busy. In our
experimentsS is set to the number of processors, twice the murob processors, four
times the number of processors, and eight timesitineber of processors. Note that the
cost of generating the tasks increases slightl$ agxreases, so it cannot be arbitrarily
large. Finally, we begin by settirtgto 1 and noting that at this point the numberagks
would be equivalent to the domain size of the fibstd variable. If this size is less than
our desired number of tasks we simply increase the depth level until we canegate
up to approximatelys tasks.

There is a minor note about choosing the fixed aldeis when dealing with
patterns that contain universal quantifiers. Rettat when a variable is qualified with a
universal quantifier (*), then it means the constranust be satisfied for all primitive
events of the variable marked by the universal tfi@n Therefore, universally
guantified variables cannot be fixed variables beseaeach task must contain all the

primitive events of the universally quantified \adsie.

4.3.2.Rules for Task Generation

The task-generation methods discussed involve gatkia sub-trees at depth-lewebnd
grouping them into larger-sized tasks. Certainguheist be followed when creating these
groups in order to avoid “duplicate work-effort” e the backtracking algorithm is
executed. Here, “duplicate work-effort” refers be tscenario where more than one thread
visits the same set of nodes (i.e., primitive ewaltes) from a top level node to a leaf
node in the search tree. Note that the nodes bpregent the primitive event values.
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T1 T Grouped

T1 T2 T1 T, Ty T, Scattered

Figure 4.2: Task-Generation Example

(Grouped: Independent Tasks, Scattered: Duplicate \ark)

For example, Figure 4.2 represents the searchufrée the second depth-level for
a pattern consisting of three variabfes $b, and$c belonging to event classésB, and

C. The search-tree portion for varialdle is not shown in the figure. The figure shows
that event clasé contains two primitive events anda,, while that ofB contains three
eventsby, by, andbs. If the pre-defined number of tasks to be gendraeis 2, then a
valid set of tasks using the grouped approach asvehin the Table 4.1. Note that with
these tasks, when the backtracking algorithm is tha sub-tree of task; is completely
independent of, as the thread assigned to work on téswill never visit a node that is

already visited or will be visited by the otheragad working on tasko.

Table 4.1: Grouped Task Generation Example (Indepesent Work)

Tasks / Variables | $a $b $c
T1 ai by, by, bz All events in C
T2 ap by, by, bz All events in C

In the scattered approach, the two tasks end ugistorg of the entire search tree
so both threads end up repeating the exactly thee sanount of work. Table 4.2 shows

the set of tasks in the scattered approach.
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Table 4.2: Scattered Task Generation Example (Dupdate Work)

Tasks / Variables | $a $b $c
T1 a; ap b1, bz, bs All events in C
T2 a; ap b1, bz, bs All events in C

Now, assumingsis 3, the groupednd scatteredhethods will generate the tasks

as shown in Figure 4.3.

T1 Tz Ts Grouped

T: T2 Ts T1 T2 Ts Scattered

Figure 4.3: Task-Generation Example

(Grouped: Duplicate Work, Scattered: Independent Wak)

Following the figure, in the grouped approach, phenitive events will be distributed

into the three tasks as shown in Table 4.3. Intdbte, different threads working on tasks
T, andT, will end up both exploring values andb;. Also, the threads working on tasks
T,andTs will end up both exploring values andbs. Obviously, splitting the search tree
in this manner will result in duplicate work-effditereby degrading the performance of
the parallel algorithm. Using 3 tasks for the saiti approach does not result in
duplicate work in this case. The examples showftiraboth approaches, duplicate work-

effort is possible when generating the tasks.

Table 4.3: Grouped Task Generation Example (Duplicie Work)

Tasks / Variables | $a $b $c

T1 a1 b1, b2 All values in C
T2 ai, az b1, bz All values in C
Ts az b2, bz All values in C
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In order to avoid such duplicate effort when useither approach for task-
generation, we follow certain rules when generatiagks. Note that these rules are
generic enough to be applied to any parallel seeshimplementation of CSPs with a
large domain space that employs the backtrackiggriéhm. Previous work mainly
looked at eliminating useless tasks when it hags lde¢termined that a path up to a certain
depth-level has failed. As such, any other taskginbéeng with those initial fixed
variables can be skipped [24]. In our approachfageis on eliminating duplicate work
that could exist in a task when the backtrackirggpalhm is executed. In addition, these
rules are applied during task-generation and nanathe threads have started working.

First, we propose the following definitions thangiify the discussion of the rules.

Definition 4.1:

A fixed node in the search-tree is a node associated wikea variable. For example,
from Figure 4.3, the nodes with valumsa, andb; are fixednodes.

Definition 4.2:

A fixedleaf node is a fixed node at depth-lededf the search tree.

Definition 4.3:
An ancestornode is any fixed node at level 1 to ledel 1. So fixed leaf nodes are not

considered ancestor nodes.

Definition 4.4:

An ancestor node of a given nodgat levell, (1 < | < d) is any fixed node along the

path ton; from level 1 tal - 1.

Definition 4.5:

A noden; is aperfect siblingof another node; if n; andn, are on the same level of the

search-tree and each have child nodes with extietlgame set of values. Note that when
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looking at an entire search-tree, all the nodeshensame level are perfect siblings of

each other. This is not necessarily the case totimes as we will see shortly.

Definition 4.6:

A noden; is animperfect siblingof another node, if n; andn, are on the same level of
the search-tree with each having a set of vallieand C; respectively associated with
their child nodes and there exists a valu€jrthat is not inC,, or vice versa. In other
words, n; andn, do not have exactly the same set of values adsdcvaith their child

nodes. Imperfect siblings only occur when lookihgub-trees.

Given a taskKT;, let F; represent the set of values of the fixed node$; iand letF;

represent the set of values for the fixed nod&s &t levell.

Definition 4.7:

Two tasksT; andT; developed with sub-trees up to depth levale disjoint if there exists

alevell, (1 < | < d), where the intersection of the sets of valuetheffixed nodes at that

level is empty i.e.Fy N Fy = .

With the above definitions, one rule we need tohapghen generating tasks in order to

avoid duplicate work when the backtracking algantis executed is as follows:

Rule 4.1:

In the set of tasks generated from the entire beimee, each task must be disjoint from

every other task.

The following theorem proves that if Rule 4.1 idwed then it is not possible to have

duplicate work.
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Theorem 4.1:
If two tasksT; and T, are disjoint then the threaé’ andP; assigned to task& andT;
respectively will never visit exactly the same gkprimitive events from level to n of

the search tree, whends the height of the tree.

Proof: We prove this by contradiction. Assume the tabkand T, are disjoint but it is
possible forP; andP; to visit the same set of primitive events from letdo n, then it

means that at each leweh T; andT, there is a primitive everthat is present iy and

F; that can be visited by both threads. This impliegFy N Fy = &, VI € {1, ..., n},

and as such the tasksandT; cannot be disjoint based on Definition 4.7. Theref it

must be the case T andT; are disjoint, therP; and P; cannot visit the same set of

primitive events from level to n, which implies there is no duplicate wosk.

Based on the premise that the set of tasks foraeclsdree covers the entire tree (i.e.,
there is no missing work), the next theorem posgsldhat if a sub-tree representing a

task has certain properties then it is possibleaige duplicate work.

Theorem 4.2:

If a taskT; has fixed leaf nodes with valugsandz, (wherez; andz can be equal) that
have ancestor nodes with different valudgsand h,, respectively, that are imperfect
siblings, then there must exist another thskom the search tree such tiatandT; are

not disjoint.

Proof: Since the ancestor nodes with vallesandh, are imperfect siblings, in task
either there is a node with primitive event vadudat is a child of the ancestor node with
value h; but not a child of the ancestor node with vahjeor there is a node with
primitive event valud that is a child of the ancestor node with vdipéut not a child of
the ancestor node with valbe (Definition 4.6). We prove only one case as thaopfor

the other case is similar.
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Case 1 We consider the case whereTirthere is a node with primitive eveathat is a

child of the ancestor node with valbogbut not a child of the ancestor node with vdiue

To show thafl; andT; are not disjoint, we simply need to show thain Fy = O, VI €

{1, ...,d}. Let the path with node valueg — ni — .... = (Nim = 1) = (Nigm+1) =€) —
Nim+2) — .... = (Nia = z1) be present i;. It is easy to see that there must exist another
taskT; that contains the path with node valugs € ni1) — (NRz=n2) — ...~ (im-1=
Nim-1) = (Njm =h2) = (Nim+2) = Nime) = €) = (Mm+2) = Nime2) = .. —~ (Mg = Nig =2z) as
each node on each level in the search tree cortantly the same child node values

(i.e., are perfect siblings of each other) andaalks combined cover the entire search tree

(i.e., there is no missing work). Note that on tiéh level, we already know théa is in
Ti andT; soFim N Fjm = . Therefore, in task® andT;, Fi. N Fj1 = iy, Fiz N Fiz = ni,
eoey Figm-1) N Fjm-1) = Nigm-1), Fim N0 Fjm = N2, Fim+1) N Fjm+1) = €, Fim+2) N Fjm+2) = Nigm+2),

...,Fia N Fjg = zzand hencd; andT; are not disjoint.m

Taking note of the above theorem, we employ thiewehg rule when generating
tasks.

Rule 4.2:

During task-generation, there should not be anl that has a pair of fixed leaf nodes

with ancestor nodes (with different values) that ianperfect siblings.

Next, we propose the following lemmas that will eleaus to prove that our task-
generation implementation (described in the necti@e) ensures that no duplicate work-

effort occurs.

Lemma 4.1:

There is a unique path from level 1 to each nodengtlevell in the search-tree, where

1 <| < n(nisthe last level in the search-tree).
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Proof: This can be easily verified based on the waystach tree is constructeml.

Lemma 4.2:

Given two unique pathg andp; from levels 1 td in a search-tree, there exists a lavel

(1 = m < 1) such that the primitive event values represerttiegnodes ati, andnj, are

not equal.

Proof: Again, this can be easily verified based on #erch-tree structura

4.3.3.Task-Generation Implementation

In this section, we describe the algorithms usedyémerating tasks in the grouped and
scattered approaches. Each algorithm takes as mpésired number of tasks to be
generatedS, and based on the search-tree generates a sstksfwhose size is as close
to S as possible. The goal is to generate a numbeasifstas close t8 as possible
without violating Rules 4.1 and 4.2.
Recall that the total number of tasks possibleegitid leveld is given by |B| *

Do| * ...* |Dg|, where |[} is the domain size of the variable at levelUsing this
information, we can determine the depth level ndedeorder to generate up ftasks
by simply going down one more level if the curréstl number of tasks possible is not
up to S Now, given a certain depth level we describe each algorithm for task

generation and prove that the algorithms avoididafd work-effort among the threads.

Grouped Approach

I. Casel: If dis 1, then we simply divide the total number ofles at this level (we
call thisM), by Sto get the number of nodes in each group (otheneadled the
group size)g. The algorithm then assigns the nodes at levebrh positions 1 tq@
to taskTy, positionsg + 1 to ) to taskT,, positions g + 1 to 3 to taskTs, ...,
positions (C-1g + 1 to @) to taskTs.;, and positions §+ 1 toM to taskTs.
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It is easy to see that the sets of tasks geneeditede are disjoint from each

other as the nodes in level 1 are unique and ikame overlap of nodes during the

task assignment. Thereforey N Fy = O, Vi, j € {1, ..., S, so there is no

duplicate work-effort.

Case 2: If d is greater than 1, we again set the group sizi®, the ceiling oM / S,
and then we adjust this value to a new valian order to generate a set of
relatively equal-sized tasks whose size is as doseas possible. To understand
why this adjustment is necessary, we first note tioaenforce Rule 4.2 the
algorithm creates a new task when it gets to ttst lkeaf node under the next sub-
tree rooted at leval -1. This implies that the last task generated ftbenprevious
sub-tree may not contain up tp fixed leaf nodes. This restriction is needed in
order to avoid generating tasks with fixed leaf emdhat have different ancestor

nodes that are imperfect siblings (see Figure 4.4).

Level 1
Level d-2
Level d-1
Level d
g
g g g Eg; 2 g 5
T1 T Ti-1 Ti Tia

In order to ensure that nodes y; and Y, in T; are not imperfect siblings, the
last task, T;, under sub-tree rooted at y; ends with the last fixed leaf node
and has a smaller task of size g”, and a new task is started at the next sub-

tree. This ensures that Rule 4.2 is not violated.

Figure 4.4: Grouped Approach — Enforcing Rule 4.2
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Without adjusting the group size, we note two peofid that occur as a result
of this restriction. Firstly, we see thatgfis greater than half of §ip there will be
exactly two tasks generated under each sub-tréed@d leved -1 as the algorithm
generates a new task starting at the followingtse#- This produces a set of tasks
whose size is almost two times the valueSoh the worst case. As mentioned
previously, having too many tasks could reduce éffeciency of the parallel
algorithm. Secondly, we see that exactly half & set of tasks generated would
potentially have a much smaller size than the otla¢ft Having too many unequal-
sized tasks increases the likelihood of introducngvork imbalance among the
threads which may have been avoided with relatiegbn-sized tasks (though there
IS no guarantee of this). To avoid the aforememtibproblems, wheg is greater
than half of ||, we adjusg using the following technique:

Let A represent a number between 0.5 and 1 (exclusive) such

that A*|Da| is a threshold value. When g is greater than this

threshold, it is adjusted to |Dal; otherwise it is adjusted to half

of |Dal. Note that higher values of A result in a set of tasks

whose size is much greater than S.

In our implementation\ was set to 0.707 which ensures that the actualddiz

tasks generated, denoted ®yis at most 1.414 times the initial desired s&ésee

Appendix A for details on the relationship betweei® andS’). Note that whemg is

less than half of |, it is not adjusted because though we can stlehuneven-
sized tasks, the number of tasks with equal sizédes more than the number of
tasks with unequal sizes. In fact, it is easy @tbat in the worst case, at least 66%
(i.e., at least 2 under each sub-tree, hence 2ta$k) of the tasks generated will
have equal sizes. Also, with the grouped appro#dl, impossible for the initial
group sizeg, to be greater than §Pas this implies that there was no point going as
far down as levell in the search tree in order to generate the dksitenber of

tasks. Having discussed why and how the group isizgljusted, we move on to
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proving that the tasks generated using this gro@pgadoached are always disjoint

from each other.

Proof (Case 2a): If g’ < 0.5|0y|, then there are two or more tasks whose fixefd lea

nodes have the same parent naideveld — 1. Consider any two tasks and T, if

their set of fixed leaf nodes bokiave the same parent node, then we can easily
conclude thaFiy N Fjg = & as there are no overlapping values when assigning

fixed leaf nodes to a task.
If the set of fixed leaf nodes ifi andT; do not have the same parent node

then either both tasks have no common value i g8&tiof fixed-leaf-node values
i.e., Fig N Fjg = @ or both tasks contain exactly the same set ofegassociated

with their fixed leaf nodes, i.e.F = Fjg) C Dq. This is because the parent nodes

are perfect siblings and the algorithm always starhew task when it gets to the

first fixed leaf node under a new sub-tree andiooets the task-generation with a
group size ofy’. Therefore, in the former case whea N Fg = &, the tasks; and
T; are disjoint based on Definition 4.7.

We now show that wherFg = Fjg) C Dq (the latter case), the algorithm

ensures thal; andT; are disjoint. According to Lemmas 4.1 and 4.2 kwew that
there is a unique path to each of the parent nofitge set of fixed leaf nodes T
andT;, as such there is a lewalwith different node values on each of these paths.

Therefore Tiis disjoint fromT; at levelm (Fin N Fjm = ). &

Proof (Case 2b): If g’ = |Dg|, then any two taskg andT; have exactly the same set

of fixed leaf nodes, i.eFig N Fjg = Dg and different parent nodes. We see that the

proof is the same as the latter case of secondhsoein Case 2aabove and sa;

andT; are disjoint. Therefore, there is no duplicate kaeffort based on Theorem

41.m
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Scattered Approach

Case 1: If dis 1, the algorithm simply assigns the nodesgtll 1) at position 1 to
task Ty, position 2 to tasK,, position 3 to tasKsg, ..., positionSto Ts, and then
repeats the process by assigning the node at@oSitt 1 to taskT;. Since all the

nodes at each level in the search tree have unvigues then it follows thal and
Tj are disjoint as~1; N Fp = D, Vi, j € {1, ..., S. Therefore, there will be no

duplicate work-effort.

Case 2: If d >1 andS < |Dg4|, the algorithm generates the tasks as follows. Fo

similar reasons discussed previously, we first stdfin exactly the same manner
as the group size in the grouped approach to gatelwv task siz&'. The algorithm
then assigns the fixed leaf nodes at positions B'tto the buckets; to Bs
associated with taskg to Ts. It then repeats the process again filling budkedt
the next fixed leaf node at positi&i+ 1. In order to enforce Rule 4.2, we ensure
that the first fixed leaf node under a new sub-tmsed at leved -1 is assigned to
bucket B;. This ensures that the set of fixed leaf nodesgasd to each task
remains the same as the algorithm progresses igeeRB.5).

Now we prove that the algorithm guarantees thatt#sks generated are

disjoint from each other.

Proof: As noted before, the algorithm ensures that eaitilidnas exactly the same

set of fixed leaf nodes. Therefore, ta$kis disjoint from another tasK; as

Fia N Fa = &, Vi, j € {1, ...,S} and so there will be no duplicate work-effom.
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In order to ensure that in T, nodes y; and Y, are not imperfect siblings, the

first leaf node under Yy, is assigned to task T, and not T,4. This ensures that

Rule 4.2 is not violated.

Figure 4.5: Scattered Approach — Case 5(< |Dy|)

Case 3: If d >1 andS > |Dy|, the algorithm generates the tasks as followst,Fve

adjustS according to Algorithm 4.2 to get the new tasle$z This algorithm sets
S’ to the total number of fixed leaf nodes (closes)tunder a sub-tree. In this case,
this adjustment is even more important in ordeavoid duplicate work-effort as we
will see in the proof shortly. The algorithm theltsfthe bucketd3; to Bs as in Case

2. We now prove that this algorithm ensures thattethis no duplicate work-effort.

Algorithm 4.2: Adjusting the desired number of tasks (S)

/l Initialize variables
S°=0,Y = |Dal
/I Loop through each level moving towards the root of the tree
fori=(d-1)... 1
Y=Y
Y=Y* |Di|
if S <Y break
end
./l The method closerTo would return the number Y or Y’ that is closer
10.//to S
11. S’ = closerTo(S, Y’, Y)

XN SOk W=
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Level 1
____________________ Level 2
......... Levelr -1
ir| ., Iprl*, Level r
1st .‘:"4.._ :.-":: 2nd
sub-tree under sub-tree identical
first node on level to the first one 5 Level d-2
r-1
) Level d-1
Sin Fin Jin S Level d
S

Figure 4.6: Scattered Approach — Case 3> |Dq|)

Proof: If S’ = |Dy| then the proof is same as Case 2 abov&' It |Dg4| then

S =Dyl *..* Dy, 1 <r < d - 1based on Algorithm 4.3f we consider any two

bucketsB; and B; associated with taskg and T, in the first sub-tree rooted at the
first node on level — 1 (see Figure 4.6), we see that this sub-treegagmnthe first
pathsp; andp; that are assigned to the buckBtandB; respectively. From Lemma

4.1, we know thap; andp; are unique and so according to Lemma 4.2, theee is

level m, (m > r ), where there are unequal nodes on each of fhaths. As the

algorithm moves through each node rooted at levell and fills the buckets
associated witfT; to Ts again, we note that the next paths assigned to macket

will each contain the same sequence of nodes femal t to d since all the sub-
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trees rooted at level- 1 are identical. Thereford; and T, are disjoint at levein

(Fim N Fjm = @) and so there is no duplicate work-effort, based beorem 4.1m

4.3.4.Memory Localization

As previously mentioned, this thesis focuses omlpization on a multi-core or multi-
processor machine with shared memory. As suchrderdo avoid the huge performance
degradation that occurs when multiple threads actles same memory location, we

create local objects that are accessed by eaduthwkile the search is running.

Algorithm 4.3: Creating a copy of the Conjunction object for esask

1. // Create a new Conjunction object containing the same number of
/I Disjunction, HappensBeforePair and Factor objects.

2. Conjunction newConj = origConj.copy()

3. // Lines 4 and 5 are the results of the task-generation step

4. fixedFactors = getFixedFactors()

5. unfixedFactors = getUnfixedFactors()

6. fori1=0... origConj.list.size() //Number of disjunctions

7. disj = origConj.list.get(i)

8. newDisj = newConj.list.get(i)

9. for j =0 ... newDisj.list.size() /Number of happen-before pairs
10. hbp = disj.list.get(j)

11. for k =0 ... fixedFactors.size()

12. if fixedFactors.get(k) is hbp.first

13. newDisj.list.get(j).first = fixedFactors.get(k).copy()
14. else if fixedFactors.get(k) is hbp.second

15. newDisj.list.get(j).second = fixedFactors.get(k).copy()
16. end if

17. end for

18. for k = 0 ... unfixedFactors.size()

19. if unfixedFactors.get(k) is hbp.first

20. newDisj.list.get(j).first = unfixedFactors.get(k).copy()
21. else if unfixedFactors.get(k) is hbp.second

22, newDisj.list.get(j).second = unfixedFactors.get(k).copy()
23. end if

24. end for

25.

26. end for

27. end for
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In the POET class structure, tB®njunctionobject contains the pattern in CNF
form. As such it consists of a list @fisjunction objects and the constraints between
variables are represented byHappensBeforePaiobject. EachHappensBeforePair
object contains two variables, each represented Bgctor object that holds the list of
PrimitiveEventobjects (representing the primitive events) assediavith the variable.
Each task generated has a separate “deep” cope @dnjunctionobject and separate
lists of primitive events. Though thHerimitiveEventobjects associated with the unfixed
variables would be shared by various threads, wé&awopying these objects as they are
read-only and do not require thread synchronizatidgorithm 4.3 shows the steps for
creating a copy of th€onjunctionobject that contains a subset of the search tree.

Another object that was localized is a map thattaios the timestamp cache.
POET maintains a list of vector timestamps for gawmitive event. This cache is loaded
into memory before the search algorithm runs andsed to determine the precedence
relationship between two variables. Therefore, \toic performance degradation, each
thread is given a shallow copy of the timestamghea&ince we are not making copies of
the timestamp objects, the memory cost here isgiblg.

4.3.5.Cost Analysis of Task Generation

As discussed previously, the cost of task genarasi@quivalent to the cost of traversing
the search tree up to a certain depth lelele., OK®), wherek is the size of the largest
event class. Therefore, it is important to kdepasonably low in order to reduce the cost
of task generation. Another additional cost is #wst of creating copies of the
Conjunctionobject and the timestamp cache. The cost of makiogpy of aConjunction
object depends on the number of disjunctioyiie number of happens-before pairs (i.e.,
the constraints)n, and the number of variablas, The cost of going through the outer
for-loop isl, the cost of the first nested for-loopns and the cost of the two innermost

for-loops isn (i.e., going through the fixed and unfixed vared)l Thus the total cost is

O( #* m ¥ n). From the experiments, we see that the cost ditiog the tasks is
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insignificant compared to the cost of running thlearsh algorithm, so it is usually

beneficial to run the parallel algorithm over tleggential one.

4.4, Optimization for Universal Quantifiers

Nichols [32] describes an optimization to the skaatgorithm for patterns containing

universal quantifiers, since evaluating such pastetan be very time-consuming. In
evaluating the pattergsa — *b), and assuming that and*b are associated with event

classesA andB, the search algorithm would pick a value $arfrom A and check if this
value happens-before each valueslaf If the algorithm finds that this value 6& does
not happen-before a value‘df, then it moves on to the next value farand repeats the
search beginning with the first valueof. Nichols hypothesized that due to the ordering
of primitive events, it is more likely that the riasalue of$a will fail at the same point or
a point close to the value o which caused the previous value$afto fail. Based on
this hypothesis, Nichols proposed that the valuehdhat failed should be moved to the
start of the list of events so that when the nedti@ of $a is picked, the precedence
check will fail earlier. Experiments showed thaisthe-ordering of the primitive events
associated with the universally quantified variaQe a huge performance boost for
evaluating certain patterns.

Though this optimization works well in the sequahélgorithm, its benefit is not
fully realized when running the proposed paralligioethm. This is because the task-
generation phase divides the list of events intooua subsets which are handled by

different threads, so this optimization becomeslized to each task. Following the
previous example, when a value *&f is moved to the start of the event list, only the
thread handling this task “sees” the benefit byckjyi failing on the next value ofa.
When the thread picks up its next task, it losés itiformation and begins with the first
value of$a and the first value ofb in its new sub-tree search space.

In order to improve the parallel algorithm whenming patterns with universally-

guantified variables, we propose certain changethaotask-distribution algorithm. To
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simplify the discussion of these changesylet{*yi, *y., ..., *ya} be the set of universally
guantified variables in the pattern and {z,, Z,, ..., Z.} be the set of domains for these
universally quantified variables, i.e., eathrepresents the sequence of primitive events
associated with variablgi:. Now, after a thread completes a tdekz;’ represent the new

sequence of primitive events for variable that is produced due to the optimization for
universallyquantified variables proposed by Nichols. The cleartg the task-distribution

algorithm are as follows:

1. First, we divide the set of |T| tasks into [T subsets, wheré is the number of
threads. Each thread is then assigned a subdet tdgks.

2. Each thread begins by selecting a task from its @ubset and running the
backtracking algorithm as usual.

3. When a thread completes a task, it selects thetasktin its subset (or if there is not
one, it would select the next available task frarother thread’s subset), and for each
universally quantified variabley, the thread would set the variable’s domaito z;'.
The thread would then proceed to run the backtngckigorithm on this task using
the re-ordered set of domains.

Note that because this optimization relies on thaeioof the primitive events in each
domain, it naturally favours thgroupedtask-generation approach. Section 5.2, evaluates

the benefits of this optimization for patterns @ning universal quantifiers.

4.5.Parallel Pattern-Search Architecture

In this section, we describe the overall architexiof the parallel pattern-search feature,
the co-ordination among threads, and how this rneatufe fits into the existing POET
pattern-search application.

Some parameters that can be used to configureaifadigd algorithm were added
into the existingpoet.propertiesThe first parametepoet.core.searcher.modes used to
specify whether to run the sequential algorithm egtdrn one match at a time (value:
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“default”), or to run the parallel algorithm and return amatch at a time (value:
“parallelOneMatch”), or to run the sequential algorithm and retutmatches at once
(value:“nonParallelAllMatches™), or to run the parallel algorithm and returnralitches
at once (valuetparallelAllIMatches”).

The next parametepoet.core.searcher.parallel.subtaskfact@therwise called
sub-task factor), is used to determine how mankstas generate and is specified as a
factor by which the number of processors/cores lshioe multiplied. The default value is
eight meaning that the number of tasks the algorishould generate is eight times the
number of cores. Theoet.core.searcher.parallel.numthreagsrameter specifies the
number of threads to use and the default valueqisvalent to the number of cores
available. Thepoet.core.searcher.parallel.taskcreationtyparameter is used to specify
the technique to be used for task-generationthegroupedor scatteredapproach.

In POET, the pattern-search application begins hysipg a predicate file
containing the list of patterns. It then populathe timestamp cache and loads the
primitive events into memory. The user then selagigttern and the search algorithm is
invoked. Once a match is found, it is displayethtouser and the user can select a button
in order to retrieve the next match. When runnimg $equential algorithm, displaying a
match to the user is achieved using two threads.iin thread initializes the pattern-
search classFindFlattenedMatch.javaand creates a search thread that begins the
pattern-matching algorithm. The main thread theesg sleep on a semaphore. When
the search thread finds a match, it wakes up tha theead and then goes to sleep. The
main thread then displays the match to the usetr ifaihe user requests another match,
the search thread will be woken up to continuesttarch from where it left off.

In the parallel mode (i.eparallelOneMatcl, we achieve a similar execution
sequence by making use of several threads andiocgugmaphores. The main thread
initializes the pattern-search claBgrallelIMatchFinder.javaand creates a master thread
to begin the search. The main thread then goekeép $n a similar manner. The master
thread starts out by splitting the variables in dghesn pattern intdixed andunfixedsets.
The thread then generates the tasks, with eachctagkining a copy of the pattern and
two counting semaphores. The first semaphore, ccéile master semaphore, is used by

the master thread and each task has a refereiicis emaphore. The second semaphore
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is used only by the thread executing the task.mhbster thread then creates the required
number of searcher threads and goes to sleep earnitaphore. The searcher threads then
begin executing the backtracking algorithm on tlogin event-data set.

When one of the searcher threads finds a mattietpattern, it acquires a “put”
lock, inserts the match into a list, inserts itmmaphore into a list of semaphores, wakes
up the master thread, and then releases the “pokK’ before going to sleep on its own
semaphore. The awoken master thread then wakdseupdin thread and goes to sleep
until the user asks for another match. When the asks for another match, the main
thread wakes up the master thread which in turnewakp the search thread whose
semaphore is at the front of the list of semaphdfesther threads have returned more
matches, the master thread informs the main thabadt it as before, otherwise, it goes
back to sleep. The use of a semaphore per taskegsa a slight improvement in
performance relative to when one semaphore was asdde latter approach caused the
searcher threads to block for longer periods oétwmen submitting a match.

When a searcher thread completes a task, it asgairgget” lock in order to
retrieve the next available task. Each time a tagslompleted, a counter is incremented.
Using this counter, a thread is able to know whehas completed the last task (i.e.,
when the counter is equal to the number of tagitsihich point it wakes up the master

thread which informs the main thread that therenarenore matches.
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Chapter 5
Experiments and Results

5.1. Test Setup

The parallel algorithm is implemented in Eclipse BBFOwhich was developed as an
Eclipse plug-in using Eclipse 3.3 or later [1].dlso requires the Eclipse Graphical
Editing Framework (GEF) 3.3 or later and a datalihaé stores the event-data set. The
databases currently supported are hsqgldb [2], My$8)L and PostgreSQL [4]. Our

experiments were performed using the MySQL datab&sdipse POET supports

importing UEF data sets which are plain text fileat contain the events from the target
environment. Eclipse POET also provides a userfatte for viewing the data sets and

searching for patterns. To import a data set ih® database, we start up a second

instance of Eclipse by choosing “Rus’“Open Run Dialog ...” and then double-clicking
on “Eclipse Application”. Clicking on “Run” in th@op-up dialog will automatically

include any plug-ins and source-code packagesimvtrkspace.

To import a new partial-order data set, a new gtajeust be created via “File>

“‘New Project”. We can then import a new data setidpiyt-clicking on the new project

and selecting POET’s event-database wizard. Thardiasks for the database to connect
to, some database credentials, the UEF file, amdtdlget-descriptor file. The target-

descriptor file contains the information needednt@p events from the target application
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into POET events. Once all this information hasnbestered, the data set is imported

into the database and we can view the data séteoscreen.

To search for a pattern, we click on the “POE¥"“FindPatterns” menu-item

which brings up a dialog box that enables us tectghe pattern file to be used. Figure
5.1 shows POET's view of the PVM Life partial-ordetata set (located at
poet/model/data/life.8.19.ef.uef). The applicattbat produced this data set consists of
eight processes. The simulation starts out witaramt process spawning seven processes
and then sending a message to all these procdsaels. child process then selects a
neighbour and forwards the message to it. Thedighows aspawn(started)event and
then a $pawn(don€) event which signifies that all child processesrevatarted and
spawned successfully. Theeénd and “recv’ events represent the events for sending and
receiving messages respectively. The circled pwter the figure show the first result
returned by searching for the “Spawn” pattern. Tipattern checks for every

“spawn(started)event that happens-before spawn(don€)event.

send
recy

spawn(ztarted)

spavenidone)

big:pvm_life

big:pvm_life
big:pvm_life

big:pvm_life

big:pvm_life

big:pvm_life

big:pvm_life

d A b & S S S A
b A S . . . . .

big:pvm_life

SpawnStart := [, “spawn(started)”, “’];
SpawnDone := [, “spawn(done)”, “"];
Spawn := SpawnStart --> SpawnDone;

Figure 5.1: PVM Life Event Data Set
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In order to conveniently run batch tests, we usarnand-line tools to import the
event data sets and search for patterns instetigk afser interface described above. The
poet.model.importer.UEFImportertool imports an event data set while the
poet.core.pattern.Searcheool is used for pattern matching. The parametssd to
invoke these tools are shown in Figure 5.2. No& We used re-written patterns in all the

experiments.

UEFImporter: java poet.model.importer.UEFImporter <dbname> <username> -p<password> <UEF>

<target desc. file>

Searcher: java poet.core.pattern.Searcher <dbname> <pattern_file> <pattern_name> <mode> <opt>
where <mode> is “flat” for re-written patterns OR “no_flat” for the original pattern format

and <opt> is “true” to use the optimization for universal quantifiers or “false” otherwise

Figure 5.2: Command-Line Parameters for POET Tools

Preloading cache: 32 milliseconds (not included in total time)

Mode [ParallelOneMatch]

Pattern Init: 8 milliseconds (included in total time)
Number of threads - 2

Number of subtasks - 4, time - 6 milliseconds
96 milliseconds [[0,8], [0,1]]

0 milliseconds [[0,8], [0,3]]

0 milliseconds [[0,8], [0,2]]

0 milliseconds [[0,8], [0,4]]

1 milliseconds [[0,5], [0,8]]

0 milliseconds [[0,7], [0,8]]

. O milliseconds [[0,6], [0,8]]

Number of timestamps 7

Total 7 matches found in 107 milliseconds.
<5 seconds: 7

<10 seconds: 0

<30 seconds: 0

<60 seconds: 0

<300 seconds: 0

NogprwbdrE

Figure 5.3: Search-Tool Example

Figure 5.3 shows the results from using the setwohwhen searching for the
pattern in Figure 5.1 on the PVM Life data set. To@ displays one matched event per
line, as a sequence of vector timestamps, as wélleatime taken to find that match. The
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tool also displays the total number of timestamgsded to find all the matches, and the
total time taken. The last few lines show how mamatches were found within 5, 10, 30,
60, or 300 seconds. Note that the tool finds alichmes by simulating the user requesting
the “next” match so the response time would belaimo the response time when using

the user interface (assuming the user could dhiekK'mext” button very fast).

5.2.Performance Evaluation

In this section, we compare the performance ofstwential algorithm with the parallel
version. We also evaluate the performance of the task-creation strategies.
Performance is measured based on how long it takethe algorithm to return all the
matches for a given pattern. For all the resulmwsh we deduct the time it takes to
retrieve the events from the database. In theds, tee use four different data-sets and
eight different patterns. Several of the pattemestaken from Nichols’ thesis [32]; a few
additional patterns and larger data sets werewdsd. We describe the patterns used in
order to illustrate how pattern matching can gwaddeveloper when diagnosing faults in
a distributed system. Also, we use larger dataisetsder to evaluate the performance of
the search algorithm as many real-world applicatioould have up to 100,000 events.

The first two data sets are taken from the PVM emrnent. The first one is
obtained from the distributed merge-sort applicatontaining 16 traces and 138 events
(binarymerge.16.29.ef.uef). The first pattern fréims set is “ConSend8” which finds
how many instances of eight concurresefid events there are in the data set. The
results show that there are 32 matches. Giventliesé are 16 traces, it is plausible to
still find eight concurrent sends with the othegtgiprocesses being on the receiving end
of the message. This type of pattern gives us aeseh how much concurrency the
application achieves and could help diagnose padace problems. The next pattern is
“ConSend9” which finds out if there are nine comeunt “send events during the
program execution. We expect that this should bpossible and the results return 0
matches.
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Send :=[", "send", "],

Recv :=[", "recv", T,

ConSend9 := (Send || Send || Send || Send || Send || Send || Send || Send || Send);
ConSend8 := (Send || Send || Send || Send || Send || Send || Send || Send);
SendRecv := (Send -(ANY) -> Recv);

SendSend := (Send -(ANY) -> Send);

Figure 5.4: PVM Patterns

The next data set is from the PVM life applicatwimose operation was described
in the previous section. The data set used herauish larger than the previous one,
containing 128 traces and 31,098 events, and wittkeasize of 332 KB. The third
pattern, “SendSend” which contains a universal gfi@nwhen it is re-written searches
for two consecutivesend events. Here, we see the use of the limited dpeexcluding
any event between the tweend events. This pattern returns 127 matches, asotege
since the only time consecutive sends occur ie@beginning of the program when the
parent process sends a message to all the othmrgges. Any othersénd event from a
child process would be followed by aetv’ event as the child process must wait to
receive a message before sending it out to a neighbhe fourth pattern taken from this
data set is “SendRecv” and it also contains a usalequantifier when it is re-written.
This pattern simply counts how many successful degasfers occurred during the
execution of the program. In this case there a8 f6atches.

The third data set used was collected from@G++ application containing an
intentional bug. The bug sometimes allows a methatishould be mutually exclusive to
be accessed by more than one thread. The dat@rs@iins more than 177,73%ents
over eleven traces and is 4.3 MB in size. The fiftittern is called “ConcurrentMonitors”
and it checks the number of times more than oreathis present in the method. There
are 65 occurrences, therefore the bug is discov@telsixth pattern “StartStop”, verifies
that threads are started and stopped correctlydoytong how many times a “thread
start” precedes a “thread stop”.
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EnterMonitorl := ["M1(0x0x9ac5730)", "thread received", "];
EnterMonitor2 := ["M1(0x0x9ac5684)", "thread received", ",
ConcurrentMonitors := EnterMonitorl || EnterMonitor2;

ANY := [""l ""1 ""];
ThreadStart := [, "thread start", ™];
ThreadStOp = [""’ "thread StOp", ||||];

StartStop := (ANY --> ThreadStart) --> ThreadStop;

Figure 5.5: uC++Patterns

The final data set used was collected from the §Gket application as
described in Section 2.4.1. This data set conta#4t5561 events and is about 21MB in
size. The “FirstConnectionEstablished” and “Last@attionEstablished” patterns are the
seventh and final patterns respectively (see Fig8e

The experiments were run on a Linux Ubuntu SMPeemith four 1.8-GHz Six-
Core AMD Opteron processors, for a total of 24 spend 66 GB of RAM. L1, L2, and
L3 cache sizes are 128 KB, 512 KB, and 6144 KBeetgely. Each test was repeated
five times and the results of all patterns (exdegiterns 1 and 2) were not more than 5%
from the average result. Some results from Pattérasd 2 differed by up to 10% and
25% respectively from the average. It is importantote that in both the sequential and
parallel modes the variable re-ordering algorithould produce different orderings of the
same pattern that have very different executioe$inThis was seen in Pattern 6. For this
reason, we selected only the test runs that hasame variable ordering.

The tables below show the average time taken fer @kisting sequential
algorithm and the parallel algorithm using two dadr cores with a sub-task factor of

two, as well as the results of the two task-creasimategies.
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Table 5.1: Execution Time for Sequential and Paradll Algorithms on 2 Cores

Pattern | Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up
1 41.1 26.5 354 1.54 1.15

2 66.6 42.3 50.1 1.57 1.32

3 117.6 107.2 129.9 1.09 0.90

4 305.7 172.6 186.9 1.77 1.63

5 9.5 5.4 5.3 1.73 1.78

6 9.8 5.5 5.0 1.78 1.95

7 24.8 0.9 1.1 27.10 22.54

8 29.8 1.0 1.1 27.93 26.53

Table 5.2: Execution Time for Sequential and Paradll Algorithms on 4 Cores

Pattern | Sequential Grouped Scattered Grouped Speed-up Scattered Speed-up

1 411 20.8 233 1.97 1.83

2 66.6 20.6 37.0 3.22 1.79

3 117.6 61.0 75.5 1.92 1.55

4 305.7 106.2 108.0 2.87 2.83

5 9.5 34 34 2.78 2.78

6 9.8 2.8 2.9 341 3.33

7 24.8 0.6 0.6 37.12 37.12

8 29.8 0.6 0.6 44.46 44.46

5.2.1.Evaluation of Task-Generation Strategies and

Optimizations

From the results above, it is seen that for Paternto 3, thegrouped task

generation method performs better thangt@&tterednethod by about a 20% decrease in

execution time on average. For Pattern 2, the tesuh four cores show greater

performance degradation when using the scatter¢dotheThis is because this approach

results in a more imbalanced search tree wherértehread finishes within the first 15

seconds and so is left idle for the remaining 2€bsds. For Patterns 4 to 8, the two

methods performed similarly. These results sugtpedton average, the grouped method

performs better than the scattered approach. §hisost likely because maintaining the

initial ordering of the primitive events as theycoored on their target applications is
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more favourable to the pattern-matching algorithamtscattering this order in an attempt
to achieve more balanced tasks. We also suspecthibagrouped approach performs
better because within each task, memory locatiordose proximity are accessed within
the same time period (i.e., it favours spatial libga

For Pattern 3, which contains universal quantifighe results of the parallel
algorithm are not very good especially when #Huatteredmethod is used. For the
groupedmethod on two and four cores, we see a speed oplgpfabout 1.09 and 1.92
respectively. For thescatteredmethod on four cores, the speed-up achieved by the
parallel algorithm is only 1.55 and on two cores farallel algorithm is actually slower
than the sequential one. These poor results oceuause the optimization of the
sequential algorithm for the universal quantifi§see Section 4.4) outperforms the
parallel algorithm. Using the optimized parallegaiithm for universal quantifiers
discussed in Section 4.4, we repeated the testBdtierns 3 and 4, and the results are
shown in Tables 5.3 and 5.4.

Table 5.3: Execution Time of Non-Optimized vs. Optnized Algorithms on 2 Cores

Pattern Grouped Scattered gprggg_i(:) gggggfg
Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt

3 107.2 94.6 129.9 107.1 | 1.08 1.24 0.90 1.09

4 172.6 164.2 186.9 1775 | 1.77 1.86 1.63 1.72

Table 5.4: Execution Time of Non-Optimized vs. Optnized Algorithms on 4 Cores

Pattern Grouped Scattered gprgg(?.i(:) ggitégsg
Non-Opt Opt Non-Opt Opt Non-Opt Opt Non-Opt Opt

3 61.0 59.0 75.5 62.8 1.92 1.99 1.55 1.87

4 106.2 90.5 108.0 95.2 2.87 3.37 2.83 3.21

The results for Pattern 3 (see Figures 5.6 to Shw that the optimized parallel
algorithm is about 12% faster than the non-optimhizersion when using the grouped
method. On four cores, the grouped method of thenged and non-optimized versions
perform similarly for this pattern. Using the seattdmethod on both two and four cores,

the optimized parallel algorithm is about 15% fagiten the non-optimized version. Note
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that each point on the graph is the average speethile the top and bottom points of
each bar represent the maximum and minimum spedrespectively) of the five runs.

Farallel Algarithrn Optirmization - Pattern 3 (Grouped)

251
—— grouped, optimized
—#— grouped, nat optimized
2 -
p
=
=3
a k)
a k)
p
73]
15F
1 |
1 2 3 4
Mumber of cares

Figure 5.6: Optimized Parallel Algorithm for Univer sal Quantifiers
(Pattern 3 - Grouped)
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Parallel Algorithrm Optimization - Pattern 3 (Scattered)

2687
—— scattered, optimized
—#— gcattered, not optimized
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=
T 15F
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|:|5 | | |
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Figure 5.7: Optimized Parallel Algorithm for Univer sal Quantifiers
(Pattern 3 - Scattered)

For Pattern 4 (see Figures 5.8 to 5.9), when u#iieggrouped and scattered
methods on four cores, we see that the optimizedllphalgorithm is about 15% and
12% faster respectively than the non-optimizedigarsThere is not much performance
difference between the optimized and non-optimizedions of both methods when this
pattern is run on two cores. The graphs in Figbtéso 5.9 show the speed-up achieved

when using the optimized parallel algorithm on &épatterns and we see that in certain

cases the optimization does improve performance.
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Farallel Algorithrm Optirmization - Pattern 4 (Grouped)
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Figure 5.8: Optimized Parallel Algorithm for Univer sal Quantifiers
(Pattern 4 - Grouped)
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Parallel Algorithrm Optimization - Pattern 4 (Scattered)
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Figure 5.9: Optimized Parallel Algorithm for Univer sal Quantifiers
(Pattern 4 - Scattered)

5.2.2.Parallel-Algorithm Evaluation

In this section, we evaluate the speed-up of thmallphalgorithm by considering
only the grouped method. We focus on the resultfoan cores referring back to Table
5.2 for Patterns 1, 2, and 5 to 8, and Table ®#APAtterns 3 and 4. For the first pattern,
we see that the speed-up achieved is only 1.97sé&bend pattern, “ConSend9” which is
similar to “ConSend8”, has a much better speedfup.22. It is useful to point out that
one of the five runs for this pattern had a spgeaiu2.40 (i.e., about 25% worse). It
should be noted here that of all the patterns deskes was the only pattern that showed
this much disparity in execution time. A closerkaat the “ConSend9” pattern in its re-
written form shows that though there are 9 distwariables, each variable refers to the

same domain space i.sendprimitive events. “ConSend8” has similar properti€his
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leads us to suspect that the reason for the patorpence in “ConSend8” and much
disparity in runtimes in “ConSend9” may be attrdmito memory allocation and access
patterns that influence cache hit or miss rates.

For Pattern 3 (“SendSend”), a speed-up of 1.99%tsvery encouraging and it
shows that for this pattern, the optimization foiversal quantifiers is not sufficient to
achieve a much better speed-up. On the other haedext pattern, “SendRecv”, has a
speed-up of 3.37 indicating that for this patteéhe, optimization of universal quantifiers
does a much better job of improving the speed-up.

For Patterns 5 and 6, a speed-up of 2.78 and 8.déhieved which is quite good
considering that these patterns only run for abionge seconds on four cores.

For Patterns 7 and 8 we see that the result frenpénallel algorithm is about 40
times as fast as the sequential algorithm. Theorefts the tremendous speed up peculiar
to these patterns is some inefficiency in the setjaiealgorithm that is avoided in the
parallel algorithm. When Pattern 7 is re-writteag Appendix B), it consists of fourteen
disjunctions with the first eleven disjunctions leamnsisting of eight happens-before
pairs. The second to the eighth set of disjunctamesexactly the same except for the last
happens-before pair. Similarly, the ninth to twelftisjunctions are exactly the same
except for the last happens-before pair. The siitylamong the disjunctions contributes
significantly to the tremendous speed-up achieved.

In finding a match for this pattern, the backtrackalgorithm starts out as usual.
After finding the only match, the algorithm backika to the ninth disjunction and picks
the next value of the variable that was last agslgithis variable is the “DoneConnect”
variable and it is assigned to its next value. s step, the new value assigned to this
variable is not bound during the evaluation of digunction because a happens-before
pair that contains other variables satisfies ttsgudction. These other variables have the
same values that had been found in the first matchso the resulting match that occurs
due to this step is a duplicate result. Note thatabse of the similarity of the
disjunctions, a similar scenario is repeated athedisjunction resulting in a lot of
unnecessary work. On the other hand, the pardtierithm is able to avoid this work
because it selects the “DoneConnect” variable asajrthefixed variables; as such, its

domain is split into a set of one (as the initiaesof the domain is two). Therefore, after
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the first match is found, there are no more vatodse assigned to this variable and so all
the unnecessary work that led to duplicate resunltee sequential algorithm is avoided.
One would expect that it would be difficult to pretdwhen splitting the search tree in
order to achieve parallelism would result in thisckof performance boost; however, it
may be possible to optimize the sequential algorily looking at the properties of the

re-written pattern and eliminating unnecessary wahke the algorithm is running.

opeed up: Grouped Approach (Sub-task Factor of 2)
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Figure 5.10: Speed-up Grouped Approach (Sub-task Ftor of 2)

The graph in Figure 5.10 shows the speed-up olutaasethe number of cores
increases when using the groupgedk-generation methods with a sub-task factor.of 2
Note that the graph shows the results for Patt&érd and 4 to 6. In order to clearly
visualize the average performance, we excludedefPa® where the optimization of
universal quantifiers did not help much, and Pagéat and 8 where the parallel algorithm
outperformed the sequential one by over a fact@0ofFrom the graph, we see that the

average speed-up for the grouped method on twe @reé four cores is about 1.70 and
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3.0 which is equivalent to an efficiency of 85% arbo respectively. Note that the
efficiency refers to the utilization of the coraslds given by the speed-up divided by the

number of cores.

5.2.3.Task-Size Analysis

Next we consider how the number of tasks genefedts performance. We ran
the parallel algorithm using 4, 8, 16 and 32 tawk$our cores (i.e., a sub-task factor of 1,
2, 4 and 8, respectively), and found that for ladl patterns, it took less than 1 second to
create the tasks. Table 5.5 shows the averagetdikes to run the parallel algorithm on
four cores using thgroupedmethod. Note that there are no results for 16 2thtasks
for Patterns 7 and 8 as the search tree couldensplit into more tasks. From the table, it
is seen that using four tasks performs 40% worsea@rage) for Patterns 1 and 2 than
when 8 tasks were used. This is the most noticediffierence between 4 and 8 tasks
among all the patterns. The reason for this posegiormance when using 4 tasks is that
the task distribution of Patterns 1 and 2 is verigalanced with the first thread finishing

in under a second and then becoming idle for theaneder of the execution time.

Table 5.5: Total time of the Parallel Algorithm

Pattern 4 Tasks 8 Tasks 16 Tasks 32 Tasks
1 30.7 20.8 22.0 20.0

2 38.4 20.6 19.0 18.9

3 57.1 59.0 48.5 49.1

4 88.7 90.5 92.6 83.7

5 3.5 3.4 3.3 3.3

6 2.8 2.8 2.9 2.9

7 0.8 0.6

8 0.9 0.6

For Pattern 3, we see that the execution time lestwkeand 8 tasks is similar
whereas using 16 tasks performs 17% better tham \8hisks are used. Again, this is
because the threads are idle for a shorter timege&rhen more tasks are used. For all

the other patterns, the execution time betweenvér®us tasks sizes differed by not
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more than 10% from each other. In summary, Figutd Shows that as the number of
tasks increases, the speed-up achieved remaiakavely the same level. Therefore, we

suggest that using a sub-task factor of 8 may Iffeciemt for most patterns in order to

avoid thread starvation.

Speed up

Farallel Algarithrm - Grouped Method on 4 cores

1 1
12 16 20 24 28 32
Mumber of tasks

Figure 5.11: Speed-up Using Various Sizes of Tasks

5.3.Summary

Based on the results from the performance expetsneme can make certain

recommendations on how to configure the parametersrder to achieve optimum
performance of the parallel algorithm. Because gbarch algorithm is CPU-intensive
with no I/O-bound operations, the number of thresldsuld be equal to the number of

cores on the computer. Obviously, using fewer tiseaill not fully utilize all the cores
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and initial experiments using more threads showegerformance improvement. The
number of tasks generated should be about eiglestiiee number of cores as generating
fewer tasks creates a higher chance of havingtidésads for longer periods of time. On
the other hand, it is not recommended to have lada® of more than eight times the
number of cores, as this is not expected to prodacsignificant performance
improvement. Finally, the experiments have showat flor most patterns, using the
groupedapproach for task-generation performs better tharstattered approach.

To conclude, the graphs shown in Figures 5.6 td %elveal that the parallel
algorithm does not achieve linear speed-up. Thiprabably unattainable for many
parallel algorithms; however, attaining an effiaggrof up to 75% (on average) on four
cores is quite good. In the next chapter, we talaola at an approach to dynamic work-
stealing in the pattern-search algorithm and alsestigate the scalability of the parallel

algorithm as the number of cores increases.
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Chapter 6

More Improvements and Experiments

In the previous chapter, we showed that generatisgt of tasks that is eight times the
number of processors (i.e., a sub-task factor ofs8)ecommended as there was no
significant improvement as the number of tasksaased. In addition, for all the patterns
analyzed, using a size of tasks that is eight tithesnumber of processors was sufficient
in keeping all the threads busy throughout mosthef algorithm’s execution. In this

chapter, we discuss a hybrid implementation of dyinawork-stealing in the pattern-

search algorithm in order to further improve itsfpenance. We illustrate the usefulness
of this technique by introducing some patterns thaeal that even when a subtask-factor

of eight is used, thread starvation is still pokesib

6.1. Dynamic Work-stealing Algorithm

As previously mentioned, one of the challengesnyf d@dynamic work-stealing strategy is
to ensure that the cost of moving work from busydte threads is very small. To avoid
this cost initially, our algorithm begins with ast approach with the size of tasks being
eight times the number of processors. We furtheddithis set of tasks into |T{roups,
wheret is the number of threads, and assign each groapghecead. As such, each thread
has a local queue of tasks and when this queumsye it checks its neighbours for an
available task. Stealing from neighbours first llhe advantage of ensuring spatial

locality thereby improving cache performance. If idie thread finds a task from a
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neighbour, it marks itself as SLOW_BY_STEALING antarks the neighbour it stole
from as SLOW. If no task is found, the thread demets dinishedcounter (initially set
to the number of threads), and goes to sleep.

In this algorithm, the idle thread is initially pnsible for looking for more work,
but as tasks get depleted, the busy threads bemspensible for splitting their work and
giving it to idle threads. This is done mainly fefficiency of the algorithm as allowing
idle threads to get work from busy threads woulgune a lot of synchronization effort.
Also, experiments showed that the total cost pgltmdetermine when to split a task and
the cost of task-splitting itself by busy threasisnsignificant compared to the execution
time of the algorithm. Therefore, placing this exturden on busy threads does not cause
a significant performance overhead.

A busy thread periodically determines whether td g&p work by checking if it is
marked SLOW or SLOW_BY_STEALING, or if there areyadle threads (i.e., if the
finishedcounter is less than the number of threads). lieeibf these conditions holds and
the number of available tasks is less than the murabthreads, the busy thread would
split its work into two tasks if possible. The tadewould put one task in a global queue,
and then wake up an idle thread. The idle threagplyi picks the work from the global
gueue and continues working. We suggest that tiegitim is efficient for the following
reasons:

a) Initially, only busy threads that are marked SLOWSLOW_BY_ STEALING
split their work. This ensures that the portiongted tree that are “difficult” are
split into smaller tasks and given to other thredtighout this condition, threads
could end up splitting tasks that do not take lemgomplete which could cause
unnecessary overhead.

b) The previous condition in (a) is relaxed when tremeidle threads, at which time
any busy thread can split its work. This ensures threads are not idle for too
long.

c) Finally, tasks are split only when the total numbgavailable tasks is less than
the number of threads. This ensures that busydkrda not start splitting work

unnecessarily when there is still enough availalblalso ensures that the global
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gueue starts getting filled as other less busyattsecomplete their work thereby
preventing threads from being idle for too long.
The algorithm determines that there is no more wuhnken thefinishedcounter reaches
zero. The thread that decrements the counter toweuld notify the master thread and

wake up all sleeping threads which then terminate.

6.1.1.Task Splitting

As previously mentioned, a busy thread periodicalgcks whether it should split its
task. This is done using a counter configured leypthet.core.searcher.parallel.peektime
parameter in thepbet.propertiedile. This counter is equivalent to the numbenoties a
thread should visit when executing the backtracldalgprithm before checking to see if
the conditions for task-splitting hold. This parderes perturbed a little for each thread
to further ensure that task-splitting occurs dfedé@nt times among the threads.
Task-splitting occurs closest to the root of tharek tree in order to ensure that
the work is large enough. The algorithm begins lith first level of the tree and splits
the unvisited set of nodes into two (assuming thet level does not correspond to a
universally quantified variable). If this is notgsble because the thread is currently on
the last node at this level, the algorithm movesrlto the next level and tries to split the
unvisited nodes at this level. Figure 6.1 showg&-tmitting at various levels when the

initial search tree is divided into two tasks thet handled by two threads.
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Figure 6.1: Task-splitting

6.2.Performance Evaluation

We evaluate the performance of the dynamic workhstg approach by comparing it
with the static approach using a subtask factoeight. We suggest that an efficient
dynamic work-stealing algorithm is one that perferas well as the static approach in
cases where thread starvation does not occur amdham performs better otherwise. In
addition to our existing patterns, we introducergmpattern called “FinalDataTransfer”
operating on the TCP-socket application dataset pattern finds the last data transfer

that occurred from one of the clients to the sear&t is shown in Figure 6.2.

77



DataTransferC1 := ["Process9771", "Send", ""].['Closed44194", "Send_stream", "7;
DataTransferC2 := ['Process9777", "Send", ""].["Closed44200", "Send_stream", "7,

DataTransferC1 *alldtcl;
DataTransferC2 *alldtc2, $dtc2;

FinalDataTransfer := ($dtc2 !--> *alldtc1) & ($dtc2 !--> *alldtc2);

Figure 6.2: “FinalDataTransfer” Pattern

We also include a fifth dataset taken from the candommunication
application. ThisMPI [4] application generates communication events witlspecific
regularities. The dataset contains 53,248 eventssists of 251 processes and is 1.5 MB
in size. Each process in this application repewtsdlects at random another process to
send a message to. The first pattern from thissdatéthe tenth overall) is called
“FourSendSendP1” and finds the instances of fonseoutive send events that occur on
the first process. There are only five matchesrneth out of 100 send events on this
process. The second pattern, “TwoSendRecvP1”, finstances of two consecutive send
and receive pairs that occur on the first procémsre are 17 matches found of a total of
201 send and receive events. The final pattern tfosndata set, “ConSendP1P9” checks
for two consecutive receive events on the nintltcgse that could potentially have come
from two consecutive send events on the first mec&he pattern “SendSendP1” checks
for two consecutive sends on Process 1 while “RecvR9” checks for two consecutive
receive events on Process 9. “ConSendP1P9” thesisterof these two patterns. There
are total of 552 matches returned for this patt@ththese patterns aim at verifying that
the communication application is indeed random wnth form of regularities. The
patterns are shown in Figure 6.3.
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ANY =", "™

P1Send := ["Process 1", "send", ""];
P1Recv := ["Process 1", "receive”, "7,
P9Recv :=["Process 9", "receive", ";

P1Send $p1, $p2, $p3, $p4;

P1Recv $r1, $r2;

FourSendSendP1 := ($p1 -(ANY)-> $p2) & ($p2 -(ANY)-> $p3) & ($p3 -(ANY)-> $p4) ;
TwoSendRecvP1 := ($pl -(ANY)-> $r1) & ($r1 -(ANY)-> $p2) & ($p2 -(ANY)-> $r2);

SendSendP1 := (P1Send -(ANY)-> P1Send);
RecvRecvP9 := (P9Recv -(ANY)-> P9Recv);
ConSendP1P9 := SendSendP1 --> RecvRecvP9;

Figure 6.3: Random Patterns

The table below shows the execution time of thécstask-distribution method
using a sub-task factor of eight (i.e., 32 tasksept patterns 7 and 8 which use 8 tasks)
versus the dynamic approach. For the dynamic apprage use a peek-time of 100. The
tests were executed on four cores and each testuna$ve times except for Patterns 9
and 12 that were run three times due to their lexegcution times. For Patterns 3 to 11
and Pattern 12 each run time did not differ by ntbeen 5% and 7% from the average
respectively. Some results from Patterns 1 andfterdd by up to 10% and 25%
respectively from the average.

We see that for Patterns 1 to 4, and 6 to 9 thdtsesom both strategies differ by
less than 10%. So we can conclude that the tweegies perform similarly for these
patterns. For Pattern 5, the static strategy pagoabout 15% better than the dynamic
approach. Since the execution time of this pati®tass than 4 seconds, the overhead of
the dynamic approach outweighs performance impreventor Patterns 10 to 12, the
execution time of the dynamic approach is 15% @ 2&ster than the static method. And
we see that the running times for these are bet@8eand 1100 seconds. Therefore, we
can summarize that the dynamic approach performsorably well compared to the
static approach without introducing too much ovadheprovided the execution time is

not very short (i.e., a few seconds).
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Table 6.1: Execution Time for Static vs. Dynamic $ategies on 4 Cores

Pattern | Sequential Static Dynamic Static Speed-up Dynamic Speed-up
1 41.1 20.0 19.8 2.05 2.06
2 66.6 18.9 18.9 3.51 3.51
3 117.6 49.1 46.2 2.39 2.54
4 305.7 83.7 82.3 3.65 3.71
5 9.5 3.3 3.8 2.83 2.44
6 9.8 29 3.2 3.30 2.98
7 24.8 0.6 0.7 37.12 35.14
8 29.8 0.6 0.7 44.46 42.11
9 2150 569.8 567.9 3.77 3.78
10 103.6 39.4 29.5 2.62 3.50
11 221.5 77.2 61.9 2.86 3.57
12 3994.4 1296.4 1082.5 3.08 3.69

6.3. Scalability of the Parallel Algorithm

In this section we evaluate the level of paralfeliwe achieve as the number of cores is
increased. Although POET would generally not beanriarge servers with hundreds of
processors, we include this section in order tosuesthe scalability of the algorithm to
a modest number of cores. We select patterns timafar several minutes in order to
justify the need for more cores. We select PatierendRecv, which takes 5 minutes to
run in the sequential mode. We also include Patérand 12 (“FinalDataTransfer” and
“ConSendP1P9” patterns respectively) that run foraBd 65 minutes in the sequential
mode. We compare the scalability of the staticw&idynamic task-distribution strategies
in the results in Tables 6.2 and 6.3.

The tables show the time in seconds and speed-upest patterns using the
parallel algorithm with both the static and dynamypproach to task distribution. We use
a sub-task factor of eight and a peek-time of 1@&tterns 4 and 9 were run five and
three times respectively and the result from eachdid not differ by more than 5% of
the average. Pattern 12 was run three times ancsidt from each run did not differ by
more than 10% from the average. From the tableseecthat for both the dynamic and
static strategies, the “SendRecv” pattern (Pad¢rns about 80% efficient up to 8 cores,
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and then drops to 50% efficiency at 16 cores arwhig about 40% efficient at 24 cores.
This is most likely because for a pattern that rtors30 seconds on 16 cores, adding
more cores means that there is probably not muck teokeep them busy. On the other
hand, for both approaches, the “FinalDataTransfedttern 9) and the “ConSendP1P9”
(Pattern 12) patterns, which take a much longee tionrun, are still up to 80% efficient

at 24 cores. This suggests that the parallel dlgaris scalable for patterns that run for

longer time periods.

Table 6.2: Execution Time of Parallel Algorithm onSeveral Cores

Number of cores
Pattern | Strategy

1 2 4 8 12 16 20 24
4 Static 305.7 158.6 83.7 47.5 36.0 34.5 34.7 317
4 Dynamic | 305.7 155.6 82.3 47.3 37.7 30.2 27.4 25.7
9 Static 2150 1012.7 569.8 282.2 198.5 160.3 135.2 110.7
9 Dynamic | 2150 1002.9 567.9 264.7 192.8 148.8 128.4 115.6
12 Static 3994.4 | 2480.6 1296.4 682.3 358.7 277.6 245.8 208.8
12 Dynamic | 3994.4 | 2176.8 1082.5 505.9 377.9 290.4 229.4 201.6

Table 6.3: Speed-up of Parallel Algorithm on Sevet&Cores

Pattern | Strategy Number of Cores
1 2 4 8 12 16 20 24

4 Static 1 1.92 3.65 6.42 8.47 8.83 8.80 9.64
4 Dynamic | 1 1.96 3.71 6.45 8.09 10.10 11.15 11.88
9 Static 1 2.12 3.77 7.61 10.82 13.41 15.89 19.41
9 Dynamic | 1 2.14 3.78 8.12 11.15 14.44 16.73 18.58
12 Static 1 1.61 3.08 5.85 11.13 14.38 16.24 19.12
12 Dynamic | 1 1.83 3.69 7.89 10.56 13.75 17.40 19.80

The tables above and the following graphs compgaespeed-up of the dynamic
versus static work distribution strategies. In Feg6.4, we see that for the “SendRecv”
pattern, the dynamic approach shows a significaprovement in speed-up relative to
the static approach beyond 12 cores.
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Speed up: Multiple Cores - SendRecy (Pattern 4)
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Figure 6.4: SendRecv - Speed-up on Multiple Cores

In Figure 6.5, the dynamic approach appears to shelightly better speed-up on
16 and 20 cores (about 6% on average). On 24 cbmsever, the static approach
performs better by about 5%. In this case, we pdtinat there was no need for work-
stealing as by time certain threads became idieast not possible for the busy threads to
split their task any further. As such the dynamiarkvstealing algorithm resulted in a

slight performance overhead in this case.
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Speed up: Multiple Cores - FinalDataTransferCZ (Fattern 3)
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Figure 6.5: FinalDataTransfer - Speed-up on Multipe Coreg

Finally, in Figure 6.6, the dynamic approach perfsrsignificantly better on four
and eight cores (15% and 25% better respectively) r@duces any thread-starvation that
occurs with the static approach. On 12 cores, weEaohat the static approach is about
5% better on average because one of the runs duhish 332 seconds (i.e., 10% faster
than the other two runs), and hence this resutied imuch better average performance
than the dynamic approach. On 16 cores, the s#proach is 5% better than the
dynamic approach as the work-effort involved is enevenly distributed among the
threads. Furthermore, we find that the dynamic @ggn in this case results in slight
performance overhead where some busy threads weatdeuto split their work further
and there was more contention for the few remaitasgs in the cases where tasks could
be split. On 20 and 24 cores, the dynamic approsch better as there is now a

noticeable benefit to task-splitting. This suggektt even with more tasks (which is the

! In this graph, we omit the bars at each poinhaswo approaches have similar performance.
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case as the number of cores increases), it ipeskible to have a work-effort imbalance

among the threads making dynamic work-stealing rfeoreurable in such situations.

Speed up: Multiple Cores - ConSendP1P3 (Pattern 12)
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Figure 6.6: ConSendP1P9 - Speed-up on Multiple Cose

In summary, the dynamic approach does better tharstatic approach which is
expected as threads are not left idle for long fpagods. We also see that the dynamic
approach scales equally well. One would expect déisathe number of cores increases,
thread starvation would be less likely as the setmee would be divided into more tasks
of smaller sizes. We see, however, that for thent&ecv’ pattern, the dynamic
approach still results in a better performance owpment even beyond 12 cores which

further highlights the benefits of this approackrewhen using several cores.
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Chapter 7

Closing Remarks

7.1.Conclusions

Analyzing large event datasets emitted from disteld systems continues to be an area
of research as proper analysis can enable devsltpeiiagnose and fix faults faster. We
showed how POET achieves this goal by providingach algorithm that enables users
to find event-patterns in large datasets. In thissis, we developed an efficient and
scalable parallel algorithm that improves the degmocess, making analysis of these
datasets faster.

We have introduced techniques for distributinggbarch tree associated with the
pattern-matching problem into several smaller takks can be independently handled by
several cores. We have proved that the set of iagiisjoint ensuring that cores are not
repeating the same work-effort. We performed expents with the grouped and
scattered approaches of task-generation and shthaédhe grouped approach is more
suited for the pattern-search problem in POET. Thisecause it maintains the ordering
of the primitive events as they occurred in thanget applications and it also improves
the computer's hardware-cache performance due swrielg spatial locality during
memory accesses.

Patterns containing universal quantifiers are madrallenging as they require

comparing one event with all the events in an ewtads. Though the optimization for
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universal quantifiers for the sequential algorittemnherently difficult to parallelize, we

introduced a simple optimization to the parallefjasithm that achieved up to 15%
performance improvement over the generic paralrahm. We also showed that the
static approach to task generation is not alwafficgnt even when we start out initially
with a large number of tasks. As such, we introduse efficient dynamic work-stealing
algorithm that prevents processors from starvingalfy, our experimental results show

that the parallel algorithm is scalable, providefficiencies of up to 80% on 24 cores.

7.2.Future Work

The following are areas of further research thatildamprove the pattern-search feature
of POET.

7.2.1.Improvements to Variable Re-ordering

The variable re-ordering algorithm in POET has b&sown to improve the performance
of the pattern-matching algorithm. However, therent heuristic used to determine the
final ordering of a pattern needs to be improvdusTs because the algorithm sometimes
produces an ordering that performs significantstéa than another ordering it returned.
Specifically, more work needs to be done to imprtheemethod for breaking ties when
selecting which disjunction should be chosen naxthe final ordering. In the current
scheme, ties are broken by choosing the disjunatidim the fewest unassigned variable
and then selecting the unassigned variables tltar®oost frequently in the pattern. The
problem is that there could be more than one dision that satisfies this condition. The
current scheme simply picks the disjunction thafasnd first which could lead to
different orderings (during different executions thhe same pattern) that have varying
execution times. A possible improvement may bentmduce a method that determines
the probability of a variable being assigned. Timay be useful for disjunctions with
more than one happens-before pair where only thablas in one pair will actually be

assigned when the search algorithm runs. Anothesipble improvement may be to break
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ties by choosing disjunctions with fewer happenfigepairs as this indicates that such
disjunctions may be satisfied with a smaller amoahtwork than those with more

happens-before pairs.

7.2.2.Improvements to the Backtracking Algorithm

POET still uses a naive backtracking algorithm Wwhiends to go through a lot of steps
repeatedly as demonstrated by an example in SedtlhnA simple improvement that

could be applied is the back-jumping technique dlesd in Section 3.1.

7.2.3.Improvements Based on Re-written Patterns

The verbosity of re-written patterns can be usedmprove the search algorithm as it
reveals to some extent the steps the backtrackguogittm will follow. During some of
our experiments we found that the search algoriould find the same result as many
as one hundred thousand times! This was seen wih tConSend8”,
“FirstConnectionEstablished” and “LastConnectioabished” patterns. We see that the
rules used to transform a pattern into its re-emitform usually results in a lot of
repetitions in constraints in the re-written pattéWWe believe that initial analysis of the
re-written pattern can be used to guide the seafgbrithm in order to avoid the

unnecessary work of finding duplicate results #ratlater discarded.

7.2.4.Lower and Upper Bounds of Tasks

In Chapter 4, we presented the algorithm for tamhkegation that avoids duplicate work-
effort and generates a number of tasks approxignaiglal to the desired numb@r It

may be useful for the algorithm to have certainrgntees as to how “close” the actual
number of tasks generated is to the initial desmadhber. In other words, can the
algorithm guarantee that the number of tasks gesebnaill be within a certain range of
S? A lower bound may not be so important as if thenber of tasks generated is not
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large enough, dynamic work-stealing would help kéepprocessors busy. On the other
hand, an upper bound may be more important as wa teaavoid degrading the

performance of the parallel algorithm by generatommany tasks.

7.2.5.Writing POET Patterns

More work needs to be done in developing methodsrttake it easier for POET users to
construct a pattern. Most developers diagnosinisfawould find it difficult to translate a
fault (such as a performance bottleneck) into a PQ@R&ttern. One might think of
developing a higher-level language that can bdyeasderstood by POET users and can
be translated into the current pattern languagestakting point may be to identify
common faults (such as performance bottlenecks@® conditions) and see if suitable

techniques can be found to map subsets of thd3® K patterns.
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Appendix A

In the grouped-approach implementation discusse8eiction 4.3.3, we mentioned the
importance of adjusting the group sizg,when generating tasks. We introduced a
variable A such that whemy is aboveA*|Dy|, it is adjusted to the domain size of the

variable at depth leval, i.e., |Q|; otherwise, it is adjusted to half ofs|DHere we show

the mathematical relationship betweknthe actual number of tasks genera®¢d,and
the initial desired number of tasks,
Equation (1) represents the actual number of tgekerated wheg is adjusted to

half of |Dy|, where M is the total number of nodes at level

2M
| Dal

S = 1)

Equation (2) represents the initial desired nundfg¢asks. Note that the exact valueSof

is the ceiling of M/g, but this has been omittemhirthe equation for simplicity.

M
g

S = (2)
Let o be a factor that represents by how m8c¢ts greater thas, i.e.,
S’=08 3)
Note that the maximum value gffor Equation (1) to hold ix*|D4|; wheng is above this

thresholdS’ is M/|Dy|. Substituting this maximum value, as well as Egua (1) and (2)
in (3), gives Equation (4).

2M _ oM

| Da A|Dal

(4)

When Equation (4) is resolved we get Equation (5).
o =2\ (5)
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In the scattered approach, the initial task s&see Equation 6) is increased when

it is greater thal\*|Dgy|. Equation (7) shows the new task sBein this scenario.

Substituting both equations in Equation (3) givesi&ion (8). The scattered approach is

opposite to the grouped one in that wigis greater tha\*|Dy|, the new task size is

greater.
S > A|Dal (6)
S’ = |Dal (7
o=1/A (8)

From equations (5) and (8), we see that the optimalnne ofA that minimizesr for both

the grouped and scattered approaches is givenuiatieg (9). This value can be used in

the task-generation algorithm ok can be set to some other value taking into

consideration the initial desired tasks size, thmiper of cores available, and the task-

generation approach employed.

(0 =1/ =2\ = A\ = /0.5~ 0.707 (9)
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Appendix B

The following shows the re-written pattern for ttkérstConnectionEstablished” pattern.
It consists of 14 disjunctions. The second to dighisjunctions are the same except for

the last happens-before pair. The same holds éonittith to twelfth disjunctions.

1 (*sc_all '—» $scl|*sc_all!—» *dc | $dc — *sc_all | $sc2 — *sc_all | $sc1l — *dc |
$dc — *dc | $sc2 — *dc | *dc !|— $sc2) &

2 ($scl — *dc | *sc_all!'— $scl | *sc_all !— *dc | $dc — *sc_all | $dc — *dc |

$sc2 — *sc all | $sc2 — *dc | *dc!— $dc) &

3 ($scl — *dc | *sc_all!'— $scl | *sc_all !— *dc | $dc — *sc_all | $dc — *dc |
$sc2 — *sc_all | $sc2 — *dc | *sc_all '— $sc2) &

4 ($scl — *dc | *sc_all!'— $scl | *sc_all !— *dc | $dc — *sc_all | $dc — *dc |

$sc2 — *sc all | $sc2 — *dc | *sc all '— $dc) &

5 ($scl — *dc | *sc_all - $scl | *sc_all '— *dc | $dc — *sc_all | $dc — *dc |
$sc2 — *sc_all | $sc2 — *dc | *dc !— $sc2) &

6 ($scl — *dc | *sc_all - $scl | *sc_all '— *dc | $dc — *sc_all | $dc — *dc |
$sc2 — *sc_all | $sc2 — *dc | *dc !'— $dc) &

7 ($scl — *dc | *sc_all - $scl | *sc_all '— *dc | $dc — *sc_all | $dc — *dc |
$sc2 — *sc_all | $sc2 — *dc | *sc_all '— $sc2) &

8 ($scl — *dc | *sc_all - $scl | *sc_all '— *dc | $dc — *sc_all | $dc — *dc |
$sc2 — *sc_all | $sc2 — *dc | *sc_all !'— $dc) &

9 (*sc_all - $scl | *sc_all !-» *dc | $dc — *sc_all | $dc — *dc | $sc2 — *sc_all |
$sc2 — *dc | *dc !'— $sc2) &

10 (*sc_all - $scl | *sc_all !-» *dc | $dc — *sc_all | $dc — *dc | $sc2 — *sc_all |
$sc2 — *dc | *dc!— $dc) &

11 (*sc_all - $scl | *sc_all '— *dc | $dc --> *sc_all | $dc --> *dc | $sc2 --> *sc_all |
$sc2 — *dc | *sc_all!'— $sc2) &

12 (*sc_all - $scl | *sc_all !-» *dc | $dc — *sc_all | $dc — *dc | $sc2 — *sc_all |
$sc2 — *dc | *sc_all!— $dc) &

13 ($sc2 — $dc) &

14 (*sc - $dc | $sc2 !'— *sc)
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