Show simple item record

dc.contributor.authorMarston, Andrew James
dc.date.accessioned2010-10-01 20:39:11 (GMT)
dc.date.available2010-10-01 20:39:11 (GMT)
dc.date.issued2010-10-01T20:39:11Z
dc.date.submitted2010
dc.identifier.urihttp://hdl.handle.net/10012/5589
dc.description.abstractThis thesis is a study of the geometric design of solar concentrating collectors. In this work, a numerical optimization methodology was developed and applied to various problems in linear solar concentrator design, in order to examine overall optimization success as well as the effect of various strategies for improving computational efficiency. Optimization is performed with the goal of identifying the concentrator geometry that results in the greatest fraction of incoming solar radiation absorbed at the receiver surface, for a given collector configuration. Surfaces are parametrically represented in two-dimensions, and objective function evaluations are performed using various Monte Carlo ray-tracing techniques. Design optimization is performed using a gradient-based search scheme, with the gradient approximated through finite-difference estimation and updates based on the direction of steepest-descent. The developed geometric optimization methodology was found to perform with mixed success for the given test problems. In general, in every case a significant improvement in performance was achieved over that of the initial design guess, however, in certain cases, the quality of the identified optimal geometry depended on the quality of the initial guess. It was found that, through the use of randomized quasi-Monte Carlo, instead of traditional Monte Carlo, overall computational time to converge is reduced significantly, with times typically reduced by a factor of four to six for problems assuming perfect optics, and by a factor of about 2.5 for problems assuming realistic optical properties. It was concluded that the application of numerical optimization to the design of solar concentrating collectors merits additional research, especially given the improvements possible through quasi-Monte Carlo techniques.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectNumerical Optimizationen
dc.subjectMonte Carlo methodsen
dc.subjectSolar Energyen
dc.subjectSolar Concentrationen
dc.subjectstochastic programmingen
dc.titleGeometric Optimization of Solar Concentrating Collectors using Quasi-Monte Carlo Simulationen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programMechanical Engineeringen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages