Show simple item record

dc.contributor.authorHeng, Michele Mei-Ting
dc.date.accessioned2008-05-26 13:40:07 (GMT)
dc.date.available2008-05-26 13:40:07 (GMT)
dc.date.issued2008-05-26T13:40:07Z
dc.date.submitted2008
dc.identifier.urihttp://hdl.handle.net/10012/3770
dc.description.abstractIn machining complex dies, molds, aerospace and automotive parts, or biomedical components, it is crucial to minimize the cycle time, which reduces costs, while preserving the quality and tolerance integrity of the part being produced. To meet the demands for high quality finishes and low production costs in machining parts with complex geometry, computer numerical control (CNC) machine tools must be equipped with spline interpolation, feedrate modulation, and feedrate optimization capabilities. This thesis presents the development of novel trajectory generation algorithms for Non Uniform Rational B-Spline (NURBS) toolpaths that can be implemented on new low-cost CNC's, as well as, in conjunction with existing CNC's. In order to minimize feedrate fluctuations during the interpolation of NURBS toolpaths, the concept of the feed correction polynomial is applied. Feedrate fluctuations are reduced from around 40 % for natural interpolation to 0.1 % for interpolation with feed correction. Excessive acceleration and jerk in the axes are also avoided. To generate jerk-limited feed motion profiles for long segmented toolpaths, a generalized framework for feedrate modulation, based on the S-curve function, is presented. Kinematic compatibility conditions are derived to ensure that the position, velocity, and acceleration profiles are continuous and that the jerk is limited in all axes. This framework serves as the foundation for the proposed heuristic feedrate optimization strategy in this thesis. Using analytically derived kinematic compatibility equations and an efficient bisection search algorithm, the command feedrate for each segment is maximized. Feasible solutions must satisfy the optimization constraints on the velocity, control signal (i.e. actuation torque), and jerk in each axis throughout the trajectory. The maximized feedrates are used to generate near-optimal feed profiles that have shorter cycle times, approximately 13-26% faster than the feed profiles obtained using the worst-case curvature approach, which is widely used in industrial CNC interpolators. The effectiveness of the NURBS interpolation, feedrate modulation and feedrate optimization techniques has been verified in 3-axis machining experiments of a biomedical implant.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectNURBSen
dc.subjectInterpolationen
dc.subjectFeedrateen
dc.subjectOptimizationen
dc.titleSmooth and Time-Optimal Trajectory Generation for High Speed Machine Toolsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programMechanical Engineeringen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages