Show simple item record

dc.contributor.authorBaserinia, Amir Reza
dc.date.accessioned2008-05-21 20:17:11 (GMT)
dc.date.available2008-05-21 20:17:11 (GMT)
dc.date.issued2008-05-21T20:17:11Z
dc.date.submitted2008
dc.identifier.urihttp://hdl.handle.net/10012/3719
dc.description.abstractThe accuracy of a fluid flow simulation depends not only on the numerical method used for discretizing the governing equations, but also on the distribution and topology of the mesh elements. Mesh adaptation is a technique for automatically modifying the mesh in order to improve the simulation accuracy in an attempt to reduce the manual work required for mesh generation. The conventional approach to mesh adaptation is based on a feature-based criterion that identifies the distinctive features in the flow field such as shock waves and boundary layers. Although this approach has proved to be simple and effective in many CFD applications, its implementation may require a lot of trial and error for determining the appropriate criterion in certain applications. An alternative approach to mesh adaptation is the residual-based approach in which the discretization error of the fluid flow quantities across the mesh faces is used to construct an adaptation criterion. Although this approach provides a general framework for developing robust mesh adaptation criteria, its incorporation leads to significant computational overhead. The main objective of the thesis is to present a methodology for developing an appropriate mesh adaptation criterion for fluid flow problems that offers the simplicity of a feature-based criterion and the robustness of a residual-based criterion. This methodology is demonstrated in the context of a second-order accurate cell-centred finite volume method for simulating laminar steady incompressible flows of constant property fluids. In this methodology, the error of mass and momentum flows across the faces of each control volume are estimated with a Taylor series analysis. Then these face flow errors are used to construct the desired adaptation criteria for triangular isotropic meshes and quadrilateral anisotropic meshes. The adaptation results for the lid-driven cavity flow show that the solution error on the resulting adapted meshes is 80 to 90 percent lower than that of a uniform mesh with the same number of control volumes. The advantage of the proposed mesh adaptation method is the capability to produce meshes that lead to more accurate solutions compared to those of the conventional methods with approximately the same amount of computational effort.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectComputational Fluid Dynamicsen
dc.subjectMesh Adaptationen
dc.subjectError Indicatoren
dc.titleResidual-Based Isotropic and Anisotropic Mesh Adaptation for Computational Fluid Dynamicsen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programMechanical Engineeringen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages