UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Spatial Atomic Layer Deposition of Nitrogen-doped Alumina Thin Films for High-Performance Perovskite Solar Cell Encapsulation

Loading...
Thumbnail Image

Date

2024-08

Authors

Asgarimoghaddam, Hatameh
Chen, Qiaoyun
Ye, Fan
Shahin, Ahmed
Marchione, Olivia
Song, Bo
Musselman, Kevin

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

An atmospheric-pressure spatial atomic layer deposition (AP-SALD) system is used to deposit nitrogen-doped alumina (N-AlOx) thin-film-encapsulation layers. The rapid nature of the AP-SALD process facilitates deposition of 60-nm layers directly on perovskite solar cells at 130 °C with no damage to the temperature-sensitive perovskite and organic materials. Varying the bubbling of a NH4OH precursor varied the nitrogen concentration from 0.08 to 0.68 atomic %. These small concentrations were found to have a significant impact on the structural properties of the films and their moisture barrier performance. The N-AlOx thin films had slightly higher growth rates than undoped AlOx, less unwanted hydroxyl and carbon content, and were smoother and more compact, which was attributed to a higher flux of reactive species from the volatile NH4OH. Optical calcium tests showed that the N-AlOx films had lower water-vapor-transmission rates (~10-5 g/m2/day) than undoped AlOx films and the transmission was minimized for 0.28% nitrogen. The increased compactness of the N-AlOx films is expected to minimize nanoscale percolation pathways, whereas higher nitrogen-defect concentrations may facilitate water permeation through these pathways. The stability of n-i-p and p-i-n perovskite solar cells under standard ISOS-D-1 and ISOS-D-3 testing conditions was significantly enhanced by the encapsulation layers. An N-AlOx encapsulation layer with 0.28% nitrogen improved the T80 value of a p-i-n formamidinium methylammonium lead iodide solar cell from 144 hrs to 855 hrs (ISOS-D-1) and 52 hrs to 300 hrs (ISOS-D-3).

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.nanoen.2024.109782. © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

alumina (AlOx), nitrogen doping, atmospheric-pressure spatial atomic layer deposition (AP-SALD), thin film encapsulation (TFE), perovskite solar cells (PSCs)

LC Keywords

Citation