UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A geometric investigation of non-regular separation applied to the bi-Helmholtz equation & its connection to symmetry operators

Loading...
Thumbnail Image

Date

2024-05-23

Authors

Jayyusi, Basel

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The theory of non-regular separation is examined in its geometric form and applied to the bi-Helmholtz equation in the flat coordinate systems in 2-dimensions. It is shown that the bi-Helmholtz equation does not admit regular separation in any dimensions on any Riemannian manifold. It is demonstrated that the bi-Helmholtz equation admits non-trivial non-regular separation in the Cartesian and polar coordinate systems in R^2 but does not admit non-trivial non-regular separation in the parabolic and elliptic-hyperbolic coordinate systems of R^2. The results are applied to the study of small vibrations of a thin solid circular plate. It is conjectured that the reason as to why non-trivial non-regular separation occurs in the Cartesian and polar coordinate systems is due to the existence of first order symmetries (Killing vectors) in those coordinate systems. Symmetries of the bi-Helmholtz equation are examined in detail giving supporting evidence of the conjecture.

Description

Keywords

mathematical physics, partial differential equations, separation of variables, differential geometry, symmetries

LC Keywords

Citation