Show simple item record

dc.contributor.authorMarcoux, Laurent
dc.contributor.authorRadjavi, Heydar
dc.contributor.authorYahaghi, B.R. 16:30:45 (GMT) 16:30:45 (GMT)
dc.descriptionPublished by the Institute of Mathematics Polish Academy of Sciences, Marcoux, L. W., Radjavi, H., & Yahaghi, B. R. (2020). On *-similarity in C*-algebras. Studia Mathematica, 252(1), 93–103.
dc.description.abstractTwo subsets X and Y of a unital C -algebra A are said to be -similar via s 2 A􀀀1 if Y = s􀀀1Xs and Y = s􀀀1X s. We show that this relation imposes a certain structure on the sets X and Y, and that under certain natural conditions (for example, if X is bounded), -similar sets must be unitarily equivalent. As a consequence of our main results, we present a generalized version of a well-known theorem of W. Specht.en
dc.publisherInstytut Matematycznyen
dc.relation.ispartofseriesStudia Mathematica;252(1)
dc.rightsAttribution 4.0 International*
dc.subjectquasidiagonal *-similarityen
dc.subjectFuglede-Putnam theoremen
dc.subjectSpecht's theoremen
dc.subjectunitary equivalenceen
dc.titleOn *-similarity in C*-algebrasen
dcterms.bibliographicCitationMarcoux, L. W., Radjavi, H., & Yahaghi, B. R. (2020). On *-similarity in C*-algebras. Studia Mathematica, 252(1), 93–103.
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages