UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Legacy Phosphorus Across Canada: Insights from a 60-Year Dataset

Loading...
Thumbnail Image

Date

2023-05-15

Authors

Malik, Lamisa
Byrnes, Danyka Kimberly
McLeod, Meghan
Chang, Shuyu
Van Meter, Kimberly
Basu, Nandita B.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Human activities over decades of agriculture and urbanization have altered phosphorus (P) cycling, posing a threat to water quality and ecosystem function. Algal blooms have become a pervasive problem in both small and large waterbodies across Canada. Despite concerted efforts to reduce P loading to surface waters, there has yet to be a noticeable improvement in water quality. This can be attributed to the accumulation of legacy P in the landscape as a result of excessive use of synthetic fertilizers and the production of livestock manure. These legacy P can reach the waterbodies decades after implementing P management practices. Therefore, to better understand long-term P dynamics and their drivers, it is crucial to develop long-term datasets of P inputs and outputs. We developed a 60-year (1961–2021), 250-meter grid resolution data of P components and P surplus across Canada. P surplus is the difference between P inputs (fertilizer inputs, livestock manure, detergent, and human waste) and non-hydrological P output (crop uptake). Our result shows the different drivers of P surplus across Canada. In Ontario and Quebec, the P surplus decreased from nutrient regulation programs in 1981 and subsequently rebounded in 2006 due to an increase in P fertilizer use. In prairie provinces, low P inputs and increasing crop yields have led to the mining of the P stores in the soils. This new, longer dataset will improve our understanding of long-term P dynamics and allow for explicit consideration of the impacts of legacy P on environmental outcomes.

Description

Keywords

GWF ASOM 2023, hydrology, nutrient, water quality, legacy, phosphorus, Canada

LC Keywords

Citation