UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Modulating Visual Connectivity Through 3D-Printed Ceramic Light Screens

Loading...
Thumbnail Image

Date

2023-02-07

Authors

Varshosaz, Parastoo

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis investigates an iterative modeling and fabrication process for customizable building components through the design of a high-performance light screen. Light screens, mostly implemented as physical boundaries for modulating light and providing visual accessibility between the exterior and interior spaces, are considered as highly ornamental elements in the building. One of the most common methods for constructing these screens is casting which provides a high level of flexibility for making pieces with complex geometries. However, casting technique requires making a new mold for every different piece. As a result, designers’ capability to experiment with more complex designs through these trade-off techniques has been limited by the amount of time and cost required to go beyond one-off prototypes. To avoid making new molds, this research uses clay 3D printing as it creates a direct link between the material and the digital model and results in making the pieces without needing a mediator element. Having the opportunity to apply real-time changes to the design parameters, this study evaluates the performance qualities of the screen by regulating the major influential parameters on its functionality: Form, material, light penetration, and position of the viewer. The 3D-printed components are tested with iterative physical prototyping, computational modeling, and digital simulation to demonstrate the created visual and light qualities in different applications. This framework can significantly change the process of design and fabrication of functional building components towards a more affordable and customizable approach.

Description

Keywords

3d printing, ceramic light screens, visual connectivity, light modulation, computational design

LC Keywords

Citation