Modulating Visual Connectivity Through 3D-Printed Ceramic Light Screens

dc.contributor.authorVarshosaz, Parastoo
dc.date.accessioned2023-02-07T14:04:22Z
dc.date.available2023-02-07T14:04:22Z
dc.date.issued2023-02-07
dc.date.submitted2023-02-01
dc.description.abstractThis thesis investigates an iterative modeling and fabrication process for customizable building components through the design of a high-performance light screen. Light screens, mostly implemented as physical boundaries for modulating light and providing visual accessibility between the exterior and interior spaces, are considered as highly ornamental elements in the building. One of the most common methods for constructing these screens is casting which provides a high level of flexibility for making pieces with complex geometries. However, casting technique requires making a new mold for every different piece. As a result, designers’ capability to experiment with more complex designs through these trade-off techniques has been limited by the amount of time and cost required to go beyond one-off prototypes. To avoid making new molds, this research uses clay 3D printing as it creates a direct link between the material and the digital model and results in making the pieces without needing a mediator element. Having the opportunity to apply real-time changes to the design parameters, this study evaluates the performance qualities of the screen by regulating the major influential parameters on its functionality: Form, material, light penetration, and position of the viewer. The 3D-printed components are tested with iterative physical prototyping, computational modeling, and digital simulation to demonstrate the created visual and light qualities in different applications. This framework can significantly change the process of design and fabrication of functional building components towards a more affordable and customizable approach.en
dc.identifier.urihttp://hdl.handle.net/10012/19154
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subject3d printingen
dc.subjectceramic light screensen
dc.subjectvisual connectivityen
dc.subjectlight modulationen
dc.subjectcomputational designen
dc.titleModulating Visual Connectivity Through 3D-Printed Ceramic Light Screensen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Architectureen
uws-etd.degree.departmentSchool of Architectureen
uws-etd.degree.disciplineArchitectureen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorCorrea, David
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Varshosaz_Parastoo.pdf
Size:
79.24 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: