Show simple item record

dc.contributor.authorCleland, Keith
dc.date.accessioned2022-12-22 14:13:46 (GMT)
dc.date.issued2022-12-22
dc.date.submitted2022-12-15
dc.identifier.urihttp://hdl.handle.net/10012/18988
dc.description.abstractEnergy storage is becoming increasingly important to have a consistent renewable power supply. Limitations on the cost of current energy storage technologies have prevented the mass adoption of renewable energy. This research focusses on the development of a flow battery using low-cost electrolyte materials based on bipolar electrodialysis technology. The battery operates by splitting salt water via electricity in conjunction with a bipolar membrane and ion exchange membranes to make acidic and basic solutions. The acid and base can then be neutralized at the bipolar membrane, generating voltage and current that can be used as electricity. A bipolar electrodialysis flow battery was designed, constructed, and improved to provide reliable and repeatable operation. Bipolar membranes with different membrane chemistries and materials were tested at different temperatures to understand the losses associated with bipolar electrodialysis flow batteries. A protocol was developed with an analytical framework to compare the results of the polarization curves in a simple way, without the need for fit parameters. Through the measurement of the membrane resistance and a polarization curve, ohmic and overpotential related losses could be distinguished. Links between these losses and the physical phenomena that take place within the bipolar membrane were made. This research provides insight on how to tailor improvements to the bipolar membranes for more efficient flow batteries using cost effective, sustainable electrolytes.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectflow batteryen
dc.subjectbipolar electrodialysisen
dc.subjectbipolar membraneen
dc.subjection exchange membraneen
dc.subjectenergy storageen
dc.titleDevelopment and Performance Characterization of Bipolar Electrodialysis Flow Batteriesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms2 yearsen
uws.contributor.advisorGostick, Jeff
uws.contributor.advisorBenneker, Anne
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2024-12-21T14:13:46Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages