Colorimetric Detection of Mercury Ions in Water with Capped Silver Nanoprisms
Loading...
Date
2019-05-10
Authors
Tanvir, Fouzia
Yaqub, Atif
Tanvir, Shazia
An, Ran
Anderson, William A.
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute
Abstract
The emission of mercury (II) from coal combustion and other industrial processes may have impacts on water resources, and the detection with sensitive but rapid testing methods is desirable for environmental screening. Towards this end, silver nanoprisms were chemically synthesized resulting in a blue reagent solution that transitioned towards red and yellow solutions when exposed to Hg2+ ions at concentrations from 0.5 to 100 µM. A galvanic reduction of Hg2+ onto the surfaces is apparently responsible for a change in nanoprism shape towards spherical nanoparticles, leading to the change in solution color. There were no interferences by other tested mono- and divalent metal cations in solution and pH had minimal influence in the range of 6.5 to 9.8. The silver nanoprism reagent provided a detection limit of approximately 1.5 µM (300 µg/L) for mercury (II), which compared reasonably well with other reported nanoparticle-based techniques. Further optimization may reduce this detection limit, but matrix effects in realistic water samples require further investigation and amelioration.
Description
Keywords
nanoparticles, nanoplates, spectral blue shift, amalgam, water quality