Show simple item record

dc.contributor.authorGupta, Pranjal 16:46:31 (GMT) 16:46:31 (GMT)
dc.description.abstractColumn-oriented RDBMSs, which support traditional read-heavy analytics workloads, employ a specific set of storage and query processing techniques for scalability and performance, such as positional tuple IDs, column-specific compression, and block-oriented processing. We revisit these techniques in the context of contemporary graph database management systems (GDBMSs). GDBMSs support a new set of analytics workloads, such as fraud detection in financial transaction networks or recommendations in social networks, that are also read-heavy but have fundamentally different access patterns than traditional analytics workloads. We first review the data characteristics and query access patterns in GDBMS to identify components of GDBMSs where existing columnar techniques can and cannot directly be used. We then present the physical data layout of columnar data structures, new columnar compression, and query-processing techniques that are optimized for GDBMSs. Our techniques include a new compact vertex and edge ID scheme, a new null and empty list compression scheme based on prefix-sums, and list-based query processing. We have integrated our techniques into GraphflowDB, an in-memory GDBMS. Compared to uncompressed storage, our compression techniques has scaled the system by 3.55x with minimal performance overheads. Our null compression scheme outperforms existing columnar schemes in query performance, with minor loss in compression rate and achieves both higher compression rate and better query performance as compared to row-oriented storage techniques adopted by existing GDBMSs. Finally, our list-based query processor techniques improve query performance by 2.7x on a variety of path queries and significantly outperform their corresponding conventional versions.en
dc.publisherUniversity of Waterlooen
dc.subjectgraph databaseen
dc.subjectgraph database management systemen
dc.subjectrelational database management systemen
dc.subjectcolumnar storageen
dc.subjectcolumn storesen
dc.subjectquery processingen
dc.subjectlist-based query processingen
dc.subjectnull compressionen
dc.subjectadjacency listsen
dc.subjectproperty listsen
dc.subjectvertex columnsen
dc.subjectproperty pagesen
dc.titleIntegrating Column-Oriented Storage and Query Processing Techniques into Graph Database Management Systemsen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorSemih, Salihoglu
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages