UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The role of somatosensory input in target localization during binocular and monocular viewing while performing a high precision reaching and placement task

Loading...
Thumbnail Image

Date

2019-06

Authors

Tugac, Naime
Gonzalez, David
Noguchi, Kimihiro
Niechwiej-Szwedo, Ewa

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Binocular vision provides the most accurate and precise depth information; however, many people have impairments in binocular visual function. It is possible that other sensory inputs could be used to obtain reliable depth information when binocular vision is not available. However, it is currently unknown whether depth information from another modality improves target localization in depth during action execution. Therefore, the goal of this study was to assess whether somatosensory input improves target localization during the performance of a precision placement task. Visually normal young adults (n = 15) performed a bead threading task during binocular and monocular viewing in two experimental conditions where needle location was specified by 1) vision only, or 2) vision and somatosensory input, which was provided by the non-dominant limb. Performance on the task was assessed using spatial and temporal kinematic measures. In accordance with the hypothesis, results showed that the interval spent placing the bead on the needle was significantly shorter during monocular viewing when somatosensory input was available in comparison to a vision only condition. In contrast, results showed no evidence to support that somatosensory input about the needle location affects trajectory control. These findings demonstrate that the central nervous system relies predominately on visual input during reach execution, however, somatosensory input can be used to facilitate the performance of the precision placement task.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.exer.2018.08.013. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

binocular vision, somatosensory input

LC Keywords

Citation