Show simple item record

dc.contributor.authorNguyen, Hoang Anh Thu 20:33:13 (GMT) 20:33:13 (GMT)
dc.description.abstractThis thesis is designed to meet the need for knowledge of droplet-based encapsulation strategies by carrying out systematic fundamental studies based on a double-cross configuration. This configuration has been commonly used for co-encapsulation of particles or cells with multiple reagents. Particular attention is also paid to the simplicity and robustness of the channel network for real-world applications. Proposed methods of single-particle encapsulation and integration of multiple functional components are validated by the first two projects. The goal of the first project is to co-encapsulate a 1micrometer magnetic bead (MB) with multiple Quantum Dots (QDs) for further bio-decorating the QD surfaces with different molecules (i.e. single-strand DNA). The goal of the second project is to integrate into a single device a two-step reaction assay for functionalizing the surface of QDs with oligonucleotide strands while QDs are immobilized on MBs. The QD-Oligonucleotide conjugate serves as bio-sensing probes for nucleic acid detection. Additionally, to provide the fundamental knowledge for non-microfluidic-researchers to apply this approach in their single-encapsulation applications, a comprehensive experimental study is designed to span a wide range of operating parameters.en
dc.publisherUniversity of Waterlooen
dc.titleStrategic design of flow structures for single (bio) particle analysis using droplet microfluidic platformen
dc.typeDoctoral Thesisen
dc.pendingfalse and Mechatronics Engineeringen Engineering (Nanotechnology)en of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorRen, Carolyn
uws.contributor.affiliation1Faculty of Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages