UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite

Loading...
Thumbnail Image

Date

2020-01

Authors

Zhang, Mingyu
Yeow, John

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

A flexible, self-powered and semi-transparent mid-infrared photodetector is demonstrated with graphene and poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT: PSS) composite on poly vinyl alcohol (PVA) substrate. The effective dispersion of graphene nanoplatelets within polymer chains has yielded a low requisite loading of graphene – only 3 wt% for the implement of a detector with optimized photo-thermoelectric effect, high flexibility and high transparency. Under a broadband infrared radiation with peak wavelength at 7.8 μm, 1.4 × 107 cm Hz1/2 W−1 photo detectivity is achieved in composite detector, which is 22 times higher than pure PEDOT: PSS. The demonstrated detector array exhibits good optical transparency of 63% and is capable of being bent to a radius of 1 mm due to strong interaction between composite film and PVA substrate. These features make this scalable mid-infrared photodetector very promising as next-generation optoelectronics.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.carbon.2019.09.062. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

photodetection

LC Keywords

Citation