Fluctuation correction for the critical transition of symmetric homopolymer blends
Loading...
Date
Authors
Beardsley, Tom
Matsen, Mark
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
AIP
Abstract
Monte Carlo simulations are performed on structurally symmetric binary homopolymer blends over a wide range of invariant polymerization indexes, N. A finite-size scaling analysis reveals that certain critical exponents deviate from the expected 3D-Ising values as N increases. However, the deviations are consistent with previous simulations, and can be attributed to the fact that the system crosses over to mean-field behavior when the molecules become too large relative to the size of the simulation box. Nevertheless, the finite-size scaling techniques provide precise predictions for the position of the critical transition. Using a previous calibration of the Flory-Huggins interaction parameter, chi, we confirm that the critical point scales as (chi N)_c = 2 + c/sqrt(N) for large N, and more importantly we are able to extract a reliable estimate, c ~1.5, for the universal constant.