Show simple item record

dc.contributor.authorDing, Zhenghao
dc.date.accessioned2019-05-23 15:58:33 (GMT)
dc.date.available2019-05-23 15:58:33 (GMT)
dc.date.issued2019-05-23
dc.date.submitted2019-05-15
dc.identifier.urihttp://hdl.handle.net/10012/14686
dc.description.abstractIn this thesis, I am intending to understand the cooperative effect of an ensemble of quantum emitters, which constitutes the preliminary elements of our current experimental investigations towards realization of an ultra-narrow linewidth superriant laser. In the first part of the thesis, I investigate the basics of the theory of superradiance (SR), which includes the full derivation of the Hamiltonian and the Lindblad equation for an ensemble of two-level atoms in both free-space and a single-mode waveguide. In addition, I construct the simulations for observing the transition from single-atom uncorrelated spontaneous emission to superradiance in various physical settings, as well as a simulation for the understanding of the cooperative effects of an ensemble of two-level atoms inside an optical cavity. Then, in the second part of the thesis, I introduce the experimental progress we have been making to observe SR with an ensemble of laser-cooled Cs atoms inside a hollow-core photonic crystal fiber (HCPCF). In our experiment, the Cs atoms, initially cooled using a magneto-optical trap (MOT), are guided and confined inside a short piece of HCPCF with a magic-wavelength dipole trap. Currently we have successfully implemented a novel detection methods for studying superradiance.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectquantum Opticsen
dc.subjectcold atomsen
dc.subjecthollow-core waveguideen
dc.subjectsuperradianceen
dc.subjectspontaneous emissionen
dc.titleSuperradiance and its implementation in cold atoms inside a hollow-core waveguideen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws.contributor.advisorBajcsy, Michal
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages