UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Superradiance and its implementation in cold atoms inside a hollow-core waveguide

dc.contributor.authorDing, Zhenghao
dc.date.accessioned2019-05-23T15:58:33Z
dc.date.available2019-05-23T15:58:33Z
dc.date.issued2019-05-23
dc.date.submitted2019-05-15
dc.description.abstractIn this thesis, I am intending to understand the cooperative effect of an ensemble of quantum emitters, which constitutes the preliminary elements of our current experimental investigations towards realization of an ultra-narrow linewidth superriant laser. In the first part of the thesis, I investigate the basics of the theory of superradiance (SR), which includes the full derivation of the Hamiltonian and the Lindblad equation for an ensemble of two-level atoms in both free-space and a single-mode waveguide. In addition, I construct the simulations for observing the transition from single-atom uncorrelated spontaneous emission to superradiance in various physical settings, as well as a simulation for the understanding of the cooperative effects of an ensemble of two-level atoms inside an optical cavity. Then, in the second part of the thesis, I introduce the experimental progress we have been making to observe SR with an ensemble of laser-cooled Cs atoms inside a hollow-core photonic crystal fiber (HCPCF). In our experiment, the Cs atoms, initially cooled using a magneto-optical trap (MOT), are guided and confined inside a short piece of HCPCF with a magic-wavelength dipole trap. Currently we have successfully implemented a novel detection methods for studying superradiance.en
dc.identifier.urihttp://hdl.handle.net/10012/14686
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectquantum Opticsen
dc.subjectcold atomsen
dc.subjecthollow-core waveguideen
dc.subjectsuperradianceen
dc.subjectspontaneous emissionen
dc.titleSuperradiance and its implementation in cold atoms inside a hollow-core waveguideen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorBajcsy, Michal
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ding_Zhenghao.pdf
Size:
8.13 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: