A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation
Abstract
Conventional membrane-electrode assembly (MEA), a key component in proton exchange membrane fuel cells, only operates reasonably within a narrow range of operating conditions. In this study, a scaled-up MEA that can perform adequately under a wide range of humidification and flow conditions is developed. It consists of a microporous layer (MPL) composed of graphene for the cathode electrode, catalyst layers (CLs) prepared with a short-side-chain (SSC) ionomer, and a SSC electrolyte membrane. The results show that the graphene-based MPL employed on the cathode provides an excellent platform for the CL (hence promotes catalyst activity and catalyst utilization) and improves water retention, due to its unique microstructure and morphology. The proposed MEA provides stable and highly promising performance independent of flow conditions under the relative humidities (RHs) of 70% and 100%. Interestingly, the MEA also demonstrates relatively better cell performance under low-humidity conditions (40% RH), such that it performs noticeably better, as the reactants are supplied to the cell under low-flow condition, rather than moderate- and high-flow conditions.
Cite this version of the work
Samaneh Shahgaldi, Adnan Ozden, Xiaoguo Li, Feridun Hamdullahpur
(2019).
A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation. UWSpace.
http://hdl.handle.net/10012/14665
Other formats
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Mechanical Degradation of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cells
Shen, Yinqi (University of Waterloo, 2017-06-08)The Polymer Electrolyte Membrane (PEM) fuel cell is an ideal emerging alternative power source for transportation; however, before PEM fuel cells’ widespread use, a number of technical challenges need to be overcome, ... -
Experimental Investigation of the Effects of Coagulant Dose and Permeate Flux on Membrane Fouling in a Moving Bed Biofilm Reactor-Membrane Process
Karimi, Masoomeh (University of Waterloo, 2012-04-23)The application of membrane bioreactors (MBRs) to wastewater treatment is increasing due to their ability to operate at high biomass concentrations and to deliver effluents of high quality. The major challenges associated ... -
The Lipopeptide Antibiotic Daptomycin: Its Interaction With Calcium And Membranes And The Effects Of Membrane Lipid Composition On Its Activity
Taylor, Robert (University of Waterloo, 2018-01-22)Daptomycin (Dap) is a calcium-dependent cyclic lipodepsipeptide antibiotic used clinically to treat infections with pathogenic Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). It targets ...