Show simple item record

dc.contributor.authorVickers, Cameron 15:28:44 (GMT) 15:28:44 (GMT)
dc.description.abstractThis thesis proposes improvements on techniques for the coherent control of photon-photon interactions mediated by a cloud of cold atoms. Atoms cooled and trapped in a MOT can be loaded into a hollow, photonic crystal waveguide to ensure light coupled into the waveguide is localized on the tightly confined atoms. The low temperature of the atoms decreases decoherence rates, and improves coherent light-matter interactions, such as electromagnetically induced transparency and slow light. Predictions are made for two future experiments using this system, modulating of the phase of a laser beam with a much weaker one, and modulating the transmission of a laser through two photon absorption. These predictions indicate that the phase of a 0.1μW laser beam can be modulated by as much as one milliradian per weak laser photon, and that a 800pW laser beam can modulate the transmission of a comparably powerful laser by as much as 60%. Both of these predictions would be improvements on results for similar experiments performed with warm atoms.en
dc.publisherUniversity of Waterlooen
dc.subjectCoherent Controlen
dc.subjectLow light levelsen
dc.subjectphoton-photon interactionsen
dc.subjectcold atomsen
dc.titleTechniques for Coherent Control of Effective Photon-Photon Interactions at Low Light Levelsen
dc.typeMaster Thesisen
dc.pendingfalse and Astronomyen (Quantum Information)en of Waterlooen
uws-etd.degreeMaster of Scienceen
uws.contributor.advisorBajcsy, Michal
uws.contributor.affiliation1Faculty of Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages