UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Techniques for Coherent Control of Effective Photon-Photon Interactions at Low Light Levels

dc.contributor.authorVickers, Cameron
dc.date.accessioned2019-02-01T15:28:44Z
dc.date.available2019-02-01T15:28:44Z
dc.date.issued2019-02-01
dc.date.submitted2019-01-22
dc.description.abstractThis thesis proposes improvements on techniques for the coherent control of photon-photon interactions mediated by a cloud of cold atoms. Atoms cooled and trapped in a MOT can be loaded into a hollow, photonic crystal waveguide to ensure light coupled into the waveguide is localized on the tightly confined atoms. The low temperature of the atoms decreases decoherence rates, and improves coherent light-matter interactions, such as electromagnetically induced transparency and slow light. Predictions are made for two future experiments using this system, modulating of the phase of a laser beam with a much weaker one, and modulating the transmission of a laser through two photon absorption. These predictions indicate that the phase of a 0.1μW laser beam can be modulated by as much as one milliradian per weak laser photon, and that a 800pW laser beam can modulate the transmission of a comparably powerful laser by as much as 60%. Both of these predictions would be improvements on results for similar experiments performed with warm atoms.en
dc.identifier.urihttp://hdl.handle.net/10012/14454
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectCoherent Controlen
dc.subjectLow light levelsen
dc.subjectphoton-photon interactionsen
dc.subjectcold atomsen
dc.titleTechniques for Coherent Control of Effective Photon-Photon Interactions at Low Light Levelsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorBajcsy, Michal
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vickers_Cameron.pdf
Size:
12.22 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: