UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Comparing functional dynamic normalization methods to maximal voluntary isometric contractions for lower limb EMG from walking, cycling and running

Loading...
Thumbnail Image

Date

2019-02

Authors

Chuang, Tyler
Acker, Stacey M.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

There is no consensus on the most appropriate method for normalizing an individual’s electromyography (EMG) signals from walking, cycling and running in the same data collection. The aim of this study was to compare how the magnitude and repeatability of normalization values differ from three normalization methods and to compare their scaling effect in three moderate intensity activities. Three rounds of maximal voluntary isometric contractions (MVICs), sprint cycling and sprint running were performed to obtain normalization values for each method. EMG from five moderate intensity trials of walking, cycling and running were performed and normalized using each normalization value. Normalization values, coefficients of variation, and peak normalized EMG from the three moderate intensity activities were compared across normalization methods. Sprint running resulted in greater normalization values for 6/9 muscles. MVICs produced the lowest variance in 6/9 muscles. Comparing peak normalized signals of interest across normalization methods, there were significant differences in 6/9, 7/9 and 8/9 muscles for walking, cycling and running, respectively. When investigating a combination of walking, cycling and/or running EMG data, sprint running could be used for normalization, due to its simplicity and its ability to produce a larger normalization value, despite lower repeatability.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.jelekin.2018.11.014. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

electromyography, normalization, running, cycling, lower limb

LC Keywords

Citation