UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Molecular Architecture Manipulation in Free Radical Copolymerization: An Advanced Monte Carlo Approach to Screening Copolymer Chains with Various Comonomer Sequence Arrangements

Loading...
Thumbnail Image

Date

2016-07-01

Authors

Saeb, Mohammad Reza
Mohammadi, Yousef
Pakdel, Amir
Penlidis, Alexander

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

A Kinetic Monte Carlo (KMC) simulation approach was adopted in this study to capture evolutionary events in the course of free radical copolymerization, through which batch and starved-feed semibatch processes were compared. The implementation of the KMC code developed in this work: (i) enables satisfactory control of the molecular weight of the copolymer by tracking the profiles of concentrations of macroradicals, monomers, and polymer as well as degree of polymerization, polydispersity, and chain length distribution; (ii) captures the bivariate distribution of chain length and copolymer composition; (iii) comprehensively tracks and analyzes detailed information on the molecular architecture of the growing chains, thus distinguishing between sequence length and polydispersity of chains produced in batch and starved-feed semibatch operations; (iv) makes possible the screening of products, based on such details as the number and weight fractions of products having different comonomer units located at various positions along the copolymer chains. The aforementioned characteristics were achieved by stochastic calculations through code developed in-house. This KMC simulator becomes a very useful tool for the development of tailored copolymers through free radical polymerization, with blocks separated with single units of a different type.

Description

This is the peer reviewed version of the following article: Saeb, M. R., Mohammadi, Y., Pakdel, A. S., & Penlidis, A. (2016). Molecular Architecture Manipulation in Free Radical Copolymerization: An Advanced Monte Carlo Approach to Screening Copolymer Chains with Various Comonomer Sequence Arrangements. Macromolecular Theory and Simulations, 25(4), 369–382, which has been published in final form at https://doi.org/10.1002/mats.201500096. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Keywords

Free radical copolymerization, Starved-feed polymerization, Semibatch polymerization, Kinetic Monte Carlo simulation, Bivariate distribution, Tailored copolymer properties

LC Keywords

Citation