UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Storey-based stability of unbraced structural steel frames subjected to variable fire loading

Loading...
Thumbnail Image

Date

2018-08-01

Authors

Xu, Lei
Ma, Terence
Zhuang, Yi

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Structural steel has poor fire resistance properties and often requires thermal protection. Passive thermal protection systems such as insulation for steel members by application of spray-applied fire-resistance materials (SFRM) on surfaces of structural steel members are expensive and represent a significant portion of building costs for steel structures. Also, design codes around the world are progressing towards performance-based approaches rather than prescriptive-based approaches in design for fire safety. However, it is difficult to account realistically for all probable fire scenarios, and the actual fire resistance of a structure may vary significantly depending on the nature of the fire, location of origin and characteristics of the building. A means to define and identify the maximum and minimum fire loading scenarios causing instability of a given structure is therefore desirable. Presented in this paper is a novel global optimization approach for determining the highest temperature, lowest temperature, most localized, and most distributed fire scenarios causing instability for an unbraced structural steel frame. The investigation assumes that the columns are fire protected but the beams are unprotected, and may be extended to apply in other configurations and framing materials.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.jcsr.2018.04.003 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Stability, Steel, Frame, Fire, Optimization, Scenario, Structure, Lateral, Variable, Minimization

LC Keywords

Citation