UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The effects of dielectric decrement and finite ion size on differential capacitance of electrolytically gated graphene

Loading...
Thumbnail Image

Date

2018-06-01

Authors

Daniels, Lindsey
Scott, Matthew
Mišković, Zoran L.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.

Description

The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.cplett.2018.04.030 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Graphene, Capacitance, Electrolyte, Dielectric decrement, Steric effects

LC Keywords

Citation