Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages
Abstract
A language L over an alphabet Σ is suffix-convex if, for any words x,y,z∈Σ∗, whenever z and xyz are in L, then so is yz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.
Collections
Cite this version of the work
Janusz Brzozowski, Corwin Sinnamon
(2017).
Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages. UWSpace.
http://hdl.handle.net/10012/13159
Other formats
Related items
Showing items related by title, author, creator and subject.
-
Succinct Indexes
He, Meng (University of Waterloo, 2008-02-14)This thesis defines and designs succinct indexes for several abstract data types (ADTs). The concept is to design auxiliary data structures that ideally occupy asymptotically less space than the information-theoretic lower ... -
Complexity of Suffix-Free Regular Languages
Brzozowski, Janusz; Szykuła, Marek (Elsevier, 2017-11-01)We study various complexity properties of suffix-free regular languages. A sequence (Lk,Lk+1,…) of regular languages in some class, where n is the quotient complexity of Ln, is most complex if its languages Ln meet the ... -
Syntactic Complexity of Regular Ideals
Brzozowski, Janusz; Szykuła, Marek; Ye, Yuli (Springer, 2017-08-04)The state complexity of a regular language is the number of states in a minimal deterministic finite automaton accepting the language. The syntactic complexity of a regular language is the cardinality of its syntactic ...