Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages
dc.contributor.author | Brzozowski, Janusz | |
dc.contributor.author | Sinnamon, Corwin | |
dc.date.accessioned | 2018-04-23T15:35:33Z | |
dc.date.available | 2018-04-23T15:35:33Z | |
dc.date.issued | 2017-03-06 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007%2F978-3-319-53733-7_12 | en |
dc.description.abstract | A language L over an alphabet Σ is suffix-convex if, for any words x,y,z∈Σ∗, whenever z and xyz are in L, then so is yz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms. | en |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada [grant No. OGP0000871] | en |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-53733-7_12 | |
dc.identifier.uri | http://hdl.handle.net/10012/13159 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168) | en |
dc.subject | Different alphabets | en |
dc.subject | Left ideal | en |
dc.subject | Most complex | en |
dc.subject | Quotient/state complexity | en |
dc.subject | Regular language | en |
dc.subject | Suffix-closed | en |
dc.subject | Suffix-convex | en |
dc.subject | Suffix-free | en |
dc.subject | Syntactic semigroup | en |
dc.subject | Transition semigroup | en |
dc.subject | Unrestricted complexity | en |
dc.title | Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages | en |
dc.type | Conference Paper | en |
dcterms.bibliographicCitation | Brzozowski J.A., Sinnamon C. (2017) Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages. In: Drewes F., Martín-Vide C., Truthe B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science, vol 10168. Springer, Cham | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | David R. Cheriton School of Computer Science | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |