Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

dc.contributor.authorBrzozowski, Janusz
dc.contributor.authorSinnamon, Corwin
dc.date.accessioned2018-04-23T15:35:33Z
dc.date.available2018-04-23T15:35:33Z
dc.date.issued2017-03-06
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007%2F978-3-319-53733-7_12en
dc.description.abstractA language L over an alphabet Σ is suffix-convex if, for any words x,y,z∈Σ∗, whenever z and xyz are in L, then so is yz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada [grant No. OGP0000871]en
dc.identifier.urihttps://doi.org/10.1007/978-3-319-53733-7_12
dc.identifier.urihttp://hdl.handle.net/10012/13159
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesPart of the Lecture Notes in Computer Science book series (LNCS, volume 10168)en
dc.subjectDifferent alphabetsen
dc.subjectLeft idealen
dc.subjectMost complexen
dc.subjectQuotient/state complexityen
dc.subjectRegular languageen
dc.subjectSuffix-closeden
dc.subjectSuffix-convexen
dc.subjectSuffix-freeen
dc.subjectSyntactic semigroupen
dc.subjectTransition semigroupen
dc.subjectUnrestricted complexityen
dc.titleComplexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languagesen
dc.typeConference Paperen
dcterms.bibliographicCitationBrzozowski J.A., Sinnamon C. (2017) Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages. In: Drewes F., Martín-Vide C., Truthe B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science, vol 10168. Springer, Chamen
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2David R. Cheriton School of Computer Scienceen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
specialSC.pdf
Size:
171.15 KB
Format:
Adobe Portable Document Format
Description:
Post-print
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: