Show simple item record

dc.contributor.authorAli, Qasim
dc.contributor.authorBauch, Chris T.
dc.contributor.authorAnand, Madhur
dc.date.accessioned2018-04-18 20:30:37 (GMT)
dc.date.available2018-04-18 20:30:37 (GMT)
dc.date.issued2015-10-02
dc.identifier.urihttp://dx.doi.org/10.1371/journal.pone.0139353
dc.identifier.urihttp://hdl.handle.net/10012/13130
dc.description.abstractBackground The transportation of camp firewood infested by non-native forest pests such as Asian long-horned beetle (ALB) and emerald ash borer (EAB) has severe impacts on North American forests. Once invasive forest pests are established, it can be difficult to eradicate them. Hence, preventing the long-distance transport of firewood by individuals is crucial. Methods Here we develop a stochastic simulation model that captures the interaction between forest pest infestations and human decisions regarding firewood transportation. The population of trees is distributed across 10 patches (parks) comprising a "low volume" partition of 5 patches that experience a low volume of park visitors, and a "high volume" partition of 5 patches experiencing a high visitor volume. The infestation spreads within a patch-and also between patches-according to the probability of between-patch firewood transportation. Individuals decide to transport firewood or buy it locally based on the costs of locally purchased versus transported firewood, social norms, social learning, and level of concern for observed infestations. Results We find that the average time until a patch becomes infested depends nonlinearly on many model parameters. In particular, modest increases in the tree removal rate, modest increases in public concern for infestation, and modest decreases in the cost of locally purchased firewood, relative to baseline (current) values, cause very large increases in the average time until a patch becomes infested due to firewood transport from other patches, thereby better preventing long-distance spread. Patches that experience lower visitor volumes benefit more from firewood movement restrictions than patches that experience higher visitor volumes. Also, cross-patch infestations not only seed new infestations, they can also worsen existing infestations to a surprising extent: long-term infestations are more intense in the high volume patches than the low volume patches, even when infestation is already endemic everywhere. Conclusions The success of efforts to prevent long-distance spread of forest pests may depend sensitively on the interaction between outbreak dynamics and human social processes, with similar levels of effort producing very different outcomes depending on where the coupled human and natural system exists in parameter space. Further development of such modeling approaches through better empirical validation should yield more precise recommendations for ways to optimally prevent the long-distance spread of invasive forest pests.en
dc.language.isoenen
dc.publisherPublic Library of Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectEmerald Ash Boreren
dc.subjectAgrilus-Planipennisen
dc.subjectManagement Optionsen
dc.subjectColeopteraen
dc.subjectDispersalen
dc.subjectCulturesen
dc.subjectImpactsen
dc.subjectEcologyen
dc.subjectSystemen
dc.subjectSitesen
dc.titleCoupled Human-Environment Dynamics Of Forest Pest Spread And Control In A Multi-Patch, Stochastic Settingen
dc.typeArticleen
dcterms.bibliographicCitationAli, Q., Bauch, C. T., & Anand, M. (2015). Coupled Human-Environment Dynamics of Forest Pest Spread and Control in a Multi-Patch, Stochastic Setting. PLOS ONE, 10(10), e0139353. https://doi.org/10.1371/journal.pone.0139353en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Applied Mathematicsen
uws.typeOfResourceTexten
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International

UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages