UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Multi-scale Model for Simulating Liquid-hair Interactions

Loading...
Thumbnail Image

Date

2017-07-20

Authors

Fei, Yun (Raymond)
Maia, Henrique Teles
Batty, Christopher
Zheng, Changxi
Grinspun, Eitan

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery

Abstract

The diverse interactions between hair and liquid are complex and span multiple length scales, yet are central to the appearance of humans and animals in many situations. We therefore propose a novel multi-component simulation framework that treats many of the key physical mechanisms governing the dynamics of wet hair. The foundations of our approach are a discrete rod model for hair and a particle-in-cell model for fluids. To treat the thin layer of liquid that clings to the hair, we augment each hair strand with a height field representation. Our contribution is to develop the necessary physical and numerical models to evolve this new system and the interactions among its components. We develop a new reduced-dimensional liquid model to solve the motion of the liquid along the length of each hair, while accounting for its moving reference frame and influence on the hair dynamics. We derive a faithful model for surface tension-induced cohesion effects between adjacent hairs, based on the geometry of the liquid bridges that connect them. We adopt an empirically-validated drag model to treat the effects of coarse-scale interactions between hair and surrounding fluid, and propose new volume-conserving dripping and absorption strategies to transfer liquid between the reduced and particle-in-cell liquid representations. The synthesis of these techniques yields an effective wet hair simulator, which we use to animate hair flipping, an animal shaking itself dry, a spinning car wash roller brush dunked in liquid, and intricate hair coalescence effects, among several additional scenarios.

Description

© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Fei, Y. (Raymond), Maia, H. T., Batty, C., Zheng, C., & Grinspun, E. (2017). A Multi-scale Model for Simulating Liquid-hair Interactions. ACM Trans. Graph., 36(4), 56:1–56:17. https://doi.org/10.1145/3072959.3073630

Keywords

fluid dynamics, particle-in-cell, shallow water equation, two-way coupling, wet hair

LC Keywords

Citation