UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Efficient electrochemical model for lithium-ion cells

Loading...
Thumbnail Image

Date

2017-09-12

Authors

Afshar, Sepideh
Morris, Kirsten
Khajepour, Amir

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Lithium-ion batteries are used to store energy in electric vehicles. Physical models based on electro-chemistry accurately predict the cell dynamics, in particular the state of charge. However, these models are nonlinear partial differential equations coupled to algebraic equations, and they are computationally intensive. Furthermore, a variable solid-state diffusivity model is recommended for cells with a lithium ion phosphate positive electrode to provide more accuracy. This variable structure adds more complexities to the model. However, a low-order model is required to represent the lithium-ion cells' dynamics for real-time applications. In this paper, a simplification of the electrochemical equations with variable solid-state diffusivity that preserves the key cells' dynamics is derived. The simplified model is transformed into a numerically efficient fully dynamical form. It is proved that the simplified model is well-posed and can be approximated by a low-order finite-dimensional model. Simulations are very quick and show good agreement with experimental data.

Description

Keywords

State Of Charge Estimation, Electrochemical Equations, Variable Solid-State Diffusivity Model, Low-Order Model

LC Keywords

Citation