UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Solid Phase Microextraction On-Fiber Derivatization Using a Stable, Portable, and Reusable Pentafluorophenyl Hydrazine Standard Gas Generating Vial

Loading...
Thumbnail Image

Date

2017-07-05

Authors

Poole, Justen J.
Grandy, Jonathan J.
Gomez-Rios, German Augusto
Gionfriddo, Emanuela
Pawliszyn, Janusz

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Solid phase microextraction (SPME) on-fiber derivatization methods have facilitated the achievement of lower detection limits and targeted analysis of various substances that exhibit poor chromatographic behavior, thermal instability, or high reactivity while limiting the use of organic solvents. However, previously developed on-fiber derivatization methods have been hindered by poor loading reproducibility and standard lifetime due to derivatization reagent reactivity. In addition, this reactivity often results in these reagents demonstrating toxic effects, complicating handling and standard formulation. To address this, a reusable standard gas generating vial containing pentafluorophenyl hydrazine (PFPH) has been developed. With this development, SPME fibers can now be reproducibly loaded with derivatization reagent, from an easy to use and safe platform. Validation of the vial using C-4-C-9 linear aldehyde standards as target analytes demonstrated intrabatch vial reproducibility (2% relative standard deviation (RSD), n = 4), along with PFPH headspace stability over a period of 11 weeks, facilitating reduced reagent consumption due to standard longevity. In addition, reproducibility of the derivatization reaction was observed over 1 week (RSD < 9%), and the linear concentration range was evaluated using headspace extractions from aqueous aldehyde solutions (R-2 > 0.996, 10-200 ppb v/v). Finally, the PFPH-generating vial was applied to the monitoring of volatile aldehydes generated during meat spoilage, as well as an on-site application where the free and total concentration of formaldehyde was determined in car exhaust using a portable GC/MS. To the best of our knowledge, the standard gas generating vial proposed in this work is the first documented device for the long-term storage of reusable headspace standards for a reactive, toxic, and otherwise unstable derivatization reagent standard.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.6b01449

Keywords

Chromatography-Mass Spectrometry, Volatile Aldehydes, Carbonyl-Compounds, Headspace Spme, Indoor Air, Formaldehyde, Water, System, Meat, Derivatives

LC Keywords

Citation