UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers

Loading...
Thumbnail Image

Date

2016-06-22

Authors

Liang, Hao
Liu, Biwu
Yuan, Qipeng
Liu, Juewen

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of,the tested metal ions, Fe3+ is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 mu M with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Applied Materials & Interfaces, © 2016 American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Liang, H., Liu, B., Yuan, Q., & Liu, J. (2016). Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. Acs Applied Materials & Interfaces, 8(24), 15615–15622. https://doi.org/10.1021/acsami.6b04038

Keywords

Inorganic Hybrid Nanoflowers, Metal-Organic Frameworks, Peroxidase-Like Activity, Silica Nanoparticles, Glucose Detection, Enzymes, DNA, Functionalization, Nanozymes, Therapy

LC Keywords

Citation