UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models

Loading...
Thumbnail Image

Date

2015-12

Authors

Sharif Shourijeh, Mohammad
McPhee, John

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

This study describes the development of a multibody foot–ground contact model consisting of spherical volumetric models for the surfaces of the foot. The developed model is two-dimensional and consists of two segments, the hind-foot, mid-foot, and fore-foot as one rigid body and the phalanges collectively as the second rigid body. The model has four degrees of freedom: ankle x and y, foot orientation, and metatarsal-phalangeal joint angle. Three different types of contact elements are targeted: Kelvin–Voigt, linear volumetric, and hyper-volumetric. The models are kinematically driven at the ankle and the metatarsal joints, and simulated horizontal and vertical ground reaction forces as well as center of pressure location are compared against experimental quantities acquired from barefoot measurements during a human gait cycle. Parameter identification is performed for finding optimal contact parameters and locations of the contact elements. The hyper-volumetric foot–ground contact model was found to be a suitable choice for foot/ground interaction modeling within human gait simulations; this model showed 75 % and 62 % improvement on the matching quality over the point contact and linear volumetric models, respectively.

Description

The final publication is available at Springer via http://dx.doi.org/10.1007/s11044-015-9467-6

Keywords

Foot-ground contact, Gait, Volumetric contact modeling

LC Keywords

Citation