Development of an Advanced Torque Vectoring Control System for an Electric Vehicle with In-Wheel Motors using Soft Computing Techniques

Loading...
Thumbnail Image

Date

2013-04-08

Authors

Jalali, Kiumars
Uchida, Thomas
Lambert, Steve
McPhee, John

Journal Title

Journal ISSN

Volume Title

Publisher

SAE International

Abstract

A two-passenger, all-wheel-drive urban electric vehicle (AUTO21EV) with four direct-drive in-wheel motors has been designed and developed at the University of Waterloo. A 14-degree-of-freedom model of this vehicle has been used to develop a genetic fuzzy yaw moment controller. The genetic fuzzy yaw moment controller determines the corrective yaw moment that is required to stabilize the vehicle, and applies a virtual yaw moment around the vertical axis of the vehicle. In this work, an advanced torque vectoring controller is developed, the objective of which is to generate the required corrective yaw moment through the torque intervention of the individual in-wheel motors, stabilizing the vehicle during both normal and emergency driving maneuvers. Novel algorithms are developed for the left-to-right torque vectoring control on each axle and for the front-to-rear torque vectoring distribution action. Several maneuvers are simulated to demonstrate the performance and effectiveness of the proposed advanced torque vectoring controller, and the results are compared to those obtained using the ideal genetic fuzzy yaw moment controller. The advanced torque vectoring controller is also implemented in a hardware- and operator-in-the-loop driving simulator to further evaluate its performance.

Description

Replicated with permission by SAE Copyright © 2017 SAE International. Further distribution of this material is not permitted without prior permission from SAE.

Keywords

LC Keywords

Citation