UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Templated Synthesis of Magnetic Nanoparticles through the Self-Assembly of Polymers and Surfactants

Loading...
Thumbnail Image

Date

2014-08-04

Authors

Nguyen, Vo Thu An
Gauthier, Mario
Sandre, Olivier

Journal Title

Journal ISSN

Volume Title

Publisher

Multidisciplinary Digital Publishing Institute

Abstract

The synthesis of superparamagnetic nanoparticles (NPs) for various technological applications continues to be an interesting research topic. The successful application of superparamagnetic NPs to each specific area typically depends on the achievement of high magnetization for the nanocrystals obtained, which is determined by their average size and size distribution. The size dispersity of magnetic NPs (MNPs) is markedly improved when, during the synthesis, the nucleation and growth steps of the reaction are well-separated. Tuning the nucleation process with the assistance of a hosting medium that encapsulates the precursors (such as self-assembled micelles), dispersing them in discrete compartments, improves control over particle formation. These inorganic-organic hybrids inherit properties from both the organic and the inorganic materials, while the organic component can also bring a specific functionality to the particles or prevent their aggregation in water. The general concept of interest in this review is that the shape and size of the synthesized MNPs can be controlled to some extent by the geometry and the size of the organic templates used, which thus can be considered as molds at the nanometer scale, for both porous continuous matrices and suspensions.

Description

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Keywords

superparamagnetic nanoparticles (NPs), templated synthesis, size and shape control, in situ synthesis

LC Keywords

Citation