UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Amplifying the Macromolecular Crowding Effect Using Nanoparticles

Loading...
Thumbnail Image

Date

2012-01-11

Authors

Zaki, Ahmed
Liu, Juewen
Dave, Neeshma

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

The melting temperature (Tm) of DNA is affected not only by salt but also by the presence of high molecular weight (MW) solutes, such as polyethylene glycol (PEG), acting as a crowding agent. For short DNAs in a solution of low MW PEGs, however, the change of excluded volume upon melting is very small, leading to no increase in Tm. We demonstrate herein that by attaching 12-mer DNAs to gold nanoparticles, the excluded volume change was significantly increased upon melting, leading to increased Tm even with PEG 200. Larger AuNPs, higher MW PEGs, and higher PEG concentrations show even larger effects in stabilizing the DNA. This study reveals a unique and fundamental feature at nanoscale due to geometric effects. It also suggests that weak interactions can be stabilized by a combination of polyvalent binding and the enhanced macromolecular crowding effect using nanoparticles.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemistry Society copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Zaki, A., Dave, N., & Liu, J. (2012). Amplifying the Macromolecular Crowding Effect Using Nanoparticles. Journal of the American Chemical Society, 134(1), 35–38. https://doi.org/10.1021/ja207661z

Keywords

DNA, polyethylene glycol, gold nanoparticles, macromolecular crowding

LC Keywords

Citation