Show simple item record

dc.contributor.authorLiu, Biwu
dc.contributor.authorKelly, Erin Y.
dc.contributor.authorLiu, Juewen
dc.date.accessioned2017-02-27 20:53:49 (GMT)
dc.date.available2017-02-27 20:53:49 (GMT)
dc.date.issued2014-11-11
dc.identifier.urihttp://dx.doi.org/10.1021/la503188h
dc.identifier.urihttp://hdl.handle.net/10012/11372
dc.descriptionThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Liu, B., Kelly, E. Y., & Liu, J. (2014). Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir, 30(44), 13228–13234. https://doi.org/10.1021/la503188hen
dc.description.abstractThe property of DNA is strongly influenced by counterions. Packing a dense layer of DNA onto a gold nanoparticle (AuNP) generates an interesting colloidal system with many novel physical properties such as a sharp melting transition, protection of DNA against nucleases, and enhanced complementary DNA binding affinity. In this work, the effect of monovalent cation size is studied. First, for free AuNPs without DNA, larger group 1A cations are more efficient in inducing their aggregation. The same trend is observed with group 2A metals using AuNPs capped by various self-assembled monolayers. After establishing the salt range to maintain AuNP stability, the DNA adsorption kinetics is also found to be faster with the larger Cs+ compared to the smaller Li+. This is attributed to the easier dehydration of Cs+, and dehydrated Cs+ might condense on the AuNP surface to reduce the electrostatic repulsion effectively. However, after a long incubation time with a high salt concentration, Li+ allows ∼30% more DNA packing compared to Cs+. Therefore, Li+ is more effective in reducing the charge repulsion among DNA, and Cs+ is more effective in screening the AuNP surface charge. This work suggests that physicochemical information at the bio/nanointerface can be obtained by using counterions as probes.en
dc.description.sponsorshipUniversity of Waterloo || Canadian Foundation for Innovation || Natural Sciences and Engineering Research Council || Ontario Ministry of Research and Innovation ||en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.subjectadsorptionen
dc.subjectDNAen
dc.subjectgold nanoparticlesen
dc.titleCation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trenden
dc.typeArticleen
dcterms.bibliographicCitationLiu, B., Kelly, E. Y., & Liu, J. (2014). Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir, 30(44), 13228–13234. https://doi.org/10.1021/la503188hen
uws.contributor.affiliation1Faculty of Scienceen
uws.contributor.affiliation2Chemistryen
uws.contributor.affiliation2Waterloo Institute for Nanotechnology (WIN)en
uws.typeOfResourceTexten
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages