UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

DNA Adsorption by Indium Tin Oxide (ITO) Nanoparticles

Loading...
Thumbnail Image

Date

2015-01-13

Authors

Liu, Biwu
Liu, Juewen

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

The high conductivity and optical transparency of indium tin oxide (ITO) has made it a popular material in the electronic industry. Recently, its application in biosensors is also explored. To understand its biointerface chemistry, we herein investigate its interaction with fluorescently labeled single-stranded oligonucleotides using ITO nanoparticles (NPs). The fluorescence of DNA is efficiently quenched after adsorption, and the interaction between DNA and ITO NPs is strongly dependent on the surface charge of ITO. At low pH, the ITO surface is positively charged to afford a high DNA adsorption capacity. Adsorption is also influenced by the sequence and length of DNA. For its components, In2O3 adsorbs DNA more strongly while SnO2 repels DNA at neutral pH. The DNA adsorption property of ITO is an averaging result from both components. DNA adsorption is confirmed to be mainly by the phosphate backbone via displacement experiments using free phosphate or DNA bases. Last, DNA-induced DNA desorption by forming duplex DNA is demonstrated on ITO, while the same reaction is more difficult to achieve on other metal oxides including CeO2, TiO2, and Fe3O4 because these particles adsorb DNA more tightly.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/la503917j

Keywords

nanoparticle, indium tin oxide, adsorption

LC Keywords

Citation