UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination

Loading...
Thumbnail Image

Date

2015-10-22

Authors

Liu, Biwu
Liu, Juewen

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Although DNA has been quite successful in metal cation detection, anion detectioin remains challenging because of the charge repulsion. Metal oxides represent a very important class of materials, and different oxides might interact with anions differently. In this work, a comprehensive screen of common metal oxide nanoparticles (MONPs) was carried out for their ability to adsorb DNA, quench fluorescence, and release adsorbed DNA in the presence of target anions. A total of 19 MONPs were studied, including Al2O3, CeO2, CoO, Co3O4, Cr2O3, Fe2O3, Fe3O4, In2O3, ITO, Mn2O3, NiO, SiO2, SnO2, a-TiO2 (anatase), r-TiO2 (rutile), WO3, Y2O3, ZnO, ZrO2. These MONPs have different DNA adsorption affinity. Some adsorb DNA without quenching the fluorescence, while others strongly quench adsorbed fluorophores. They also display different affinity toward anions probed by DNA desorption. Finally, CeO2, Fe3O4, and ZnO were used to form a sensor array to discriminate phosphate, arsenate, and arsenite from the rest using linear discriminant analysis. This study not only provides a solution for anion discrimination using DNA as a signaling molecule but also provides insights into the interface of metal oxides and DNA.

Description

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsami.5b08004

Keywords

arsenate, DNA, phosphate, metal oxides, biosensors

LC Keywords

Citation