UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

RF-QPC Charge Detector and S-T₊ Qubit in a Lateral Double Quantum Dot Device

Loading...
Thumbnail Image

Date

2017-01-18

Authors

Mason, Jeffrey

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

A measurement system is developed for studying a lateral double quantum dot (DQD) device formed in the two-dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure. Copper powder and RC filters are constructed to isolate the device from sources of instrumentation and thermal noise, allowing the temperature of the 2DEG to reach 70 mK. Coaxial cables and bias tees allow Gaussian shaped pulses to be delivered to several depletion gates of the device for the purpose of quantum dot qubit manipulation. A conventional charge detector based on a quantum point contact (QPC) and a room temperature current preamplifier is implemented. This readout has a bandwidth of 25 kHz. To improve readout bandwidth, a radio-frequency QPC (RF-QPC) circuit is also developed. A superconducting niobium inductor, manufactured using photolithography techniques, is the basis of a 520 MHz matching network. The RF-QPC system noise temperature is 5.2 K, limited by the cryogenic semiconductor amplifier. The RF-QPC has a bandwidth of 15 MHz. A summary of the first quantum dot physics measurements is provided. Data related to fundamental phenomena such as conductance quantization of a QPC, Coulomb blockade for a single dot, and spin blockade for a DQD are presented. A qubit based on two-electron spin states in a DQD (S-T₊ qubit) is created and coherent oscillations of the qubit known as Landau-Zener-Stückelberg oscillations are observed. Analysis of the spin-to-charge conversion mechanism associated with the qubit readout reveals the role played by metastable charge states, a result published in Physical Review B 92, 125434 (2015).

Description

Keywords

Quantum Dot, Spin Qubit, Low Temperature Physics

LC Keywords

Citation