UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Colouring Subspaces

Loading...
Thumbnail Image

Date

2005

Authors

Chowdhury, Ameerah

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis was originally motivated by considering vector space analogues of problems in extremal set theory, but our main results concern colouring a graph that is intimately related to these vector space analogues. The vertices of the <em>q</em>-Kneser graph are the <em>k</em>-dimensional subspaces of a vector space of dimension <em>v</em> over F<sub><em>q</em></sub>, and two <em>k</em>-subspaces are adjacent if they have trivial intersection. The new results in this thesis involve colouring the <em>q</em>-Kneser graph when <em>k</em>=2. There are two cases. When <em>k</em>=2 and <em>v</em>=4, the chromatic number is <em>q</em><sup>2</sup>+<em>q</em>. If <em>k</em>=2 and <em>v</em>>4, the chromatic number is (<em>q</em><sup>(v-1)</sup>-1)/(<em>q</em>-1). In both cases, we characterise the minimal colourings. We develop some theory for colouring the <em>q</em>-Kneser graph in general.

Description

Keywords

Mathematics, Kneser graph, projective geometry, colouring

LC Subject Headings

Citation