Colouring Subspaces

dc.contributor.authorChowdhury, Ameerahen
dc.date.accessioned2006-08-22T14:26:26Z
dc.date.available2006-08-22T14:26:26Z
dc.date.issued2005en
dc.date.submitted2005en
dc.description.abstractThis thesis was originally motivated by considering vector space analogues of problems in extremal set theory, but our main results concern colouring a graph that is intimately related to these vector space analogues. The vertices of the <em>q</em>-Kneser graph are the <em>k</em>-dimensional subspaces of a vector space of dimension <em>v</em> over F<sub><em>q</em></sub>, and two <em>k</em>-subspaces are adjacent if they have trivial intersection. The new results in this thesis involve colouring the <em>q</em>-Kneser graph when <em>k</em>=2. There are two cases. When <em>k</em>=2 and <em>v</em>=4, the chromatic number is <em>q</em><sup>2</sup>+<em>q</em>. If <em>k</em>=2 and <em>v</em>>4, the chromatic number is (<em>q</em><sup>(v-1)</sup>-1)/(<em>q</em>-1). In both cases, we characterise the minimal colourings. We develop some theory for colouring the <em>q</em>-Kneser graph in general.en
dc.formatapplication/pdfen
dc.format.extent327215 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/1026
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2005, Chowdhury, Ameerah. All rights reserved.en
dc.subjectMathematicsen
dc.subjectKneser graphen
dc.subjectprojective geometryen
dc.subjectcolouringen
dc.titleColouring Subspacesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
anchowdh2005.pdf
Size:
319.55 KB
Format:
Adobe Portable Document Format