Colouring Subspaces
dc.contributor.author | Chowdhury, Ameerah | en |
dc.date.accessioned | 2006-08-22T14:26:26Z | |
dc.date.available | 2006-08-22T14:26:26Z | |
dc.date.issued | 2005 | en |
dc.date.submitted | 2005 | en |
dc.description.abstract | This thesis was originally motivated by considering vector space analogues of problems in extremal set theory, but our main results concern colouring a graph that is intimately related to these vector space analogues. The vertices of the <em>q</em>-Kneser graph are the <em>k</em>-dimensional subspaces of a vector space of dimension <em>v</em> over F<sub><em>q</em></sub>, and two <em>k</em>-subspaces are adjacent if they have trivial intersection. The new results in this thesis involve colouring the <em>q</em>-Kneser graph when <em>k</em>=2. There are two cases. When <em>k</em>=2 and <em>v</em>=4, the chromatic number is <em>q</em><sup>2</sup>+<em>q</em>. If <em>k</em>=2 and <em>v</em>>4, the chromatic number is (<em>q</em><sup>(v-1)</sup>-1)/(<em>q</em>-1). In both cases, we characterise the minimal colourings. We develop some theory for colouring the <em>q</em>-Kneser graph in general. | en |
dc.format | application/pdf | en |
dc.format.extent | 327215 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/1026 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2005, Chowdhury, Ameerah. All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | Kneser graph | en |
dc.subject | projective geometry | en |
dc.subject | colouring | en |
dc.title | Colouring Subspaces | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1