POEM: Pattern-Oriented Explanations of CNN Models

dc.contributor.authorDadvar, Vargha
dc.date.accessioned2022-09-16T20:05:55Z
dc.date.available2022-09-16T20:05:55Z
dc.date.issued2022-09-16
dc.date.submitted2022-09-08
dc.description.abstractWhile Convolutional Neural Networks (CNN) achieve state-of-the-art predictive performance in applications such as computer vision, their predictions are difficult to explain, similar to other types of deep learning models. Different solutions have been proposed to explain CNNs, from explanations of individual image predictions, to interpretable models that approximate the predictions of the CNN model. A recent line of research focuses on explaining CNNs using semantic concepts in images, such as objects, shapes, or colors, which are easier to understand. We contribute to this line of research by proposing POEM, a framework that produces patterns of concepts to explain image classifier CNNs. POEM identifies patterns such as “If bed, then bedroom”, meaning that if an image contains a bed and the model pays attention to the bed, then the model classifies the image as a bedroom. We first introduce the general pipelined framework used in POEM, which we also use to describe the current related solutions. Then we propose improvements in each of the pipeline steps for more accurate explanation of CNNs. We also create a web-based tool for interactive visual analysis of the patterns. Finally, we demonstrate the effectiveness of our solution using multiple use cases involving different CNN models and datasets.en
dc.identifier.urihttp://hdl.handle.net/10012/18749
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titlePOEM: Pattern-Oriented Explanations of CNN Modelsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorGolab, Lukasz
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dadvar_Vargha.pdf
Size:
15.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: